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Abstract 

Alloy 718 has a very long history, it is still used extensively, which accounts for more than 50% 

of commercial superalloy productions in the world. The reason is that Alloy 718 exhibits good 

strength, excellent weldability and lastly, but most importantly, reasonable cost. Recently, 

confocal scanning laser microscope (CSLM) offers a convenient way for conducting a real-time 

and continuous in-situ observation of phase transformations at high temperatures. Several studies 

using CSLM have been reported for low carbon steel, stainless steel and metallic glass materials. 

The aim of this paper is to study the solidification behavior of Alloy 718 using confocal scanning 

laser microscope. In addition to the in-situ observation of solidification at different cooling rates, 

the analysis of microstructure evolution was conducted by scanning electron microscopy (SEM) 

and energy dispersive spectrometry (EDS). The results show that the cooling rate has a great 

impact on the solidification behavior of Alloy 718. Variation of secondary dendrite arm spacing, 

morphology change in MC carbide, and Laves phase after solidification at different cooling rates 

are studied in details.  

Introduction  

Alloy 718 is an age-hardenable wrought superalloy used for elevated temperature gas-turbine 

applications, which is famous for its excellent balance of properties and reasonable cost, 

accounting for more than 50% of commercial superalloy productions in the world
 
[1]. With the 

development of land-based power generation and aircraft propulsion, scaling-up of components 

has become the necessity. In response to market demands
 
the size of Alloy 718 ingot produced 

by VIM-ESR-VAR triple melting has increased markedly over the past 10 years [2-7]. However, 

the solutes segregation problem, mainly niobium segregation, is a big issue for producing large 

size Alloy 718 ingots. Particularly, some macrosegregations such as freckles and white spots 

formed during the solidification process may lead to failure of entire ingot. Therefore the in-

depth studies of solidification behavior of Alloy 718 are still needed.  

 

In the past, a number of methods has been employed to study the solidification behavior of Alloy 

718, including differential thermal analysis (DTA), high temperature freezing and computational 

modeling. Knorovsky et al., utilizing DTA, derived transformation temperatures and provided a 

solidification diagram for an idealized (interstitial free) Alloy 718 system [8]. Wang et al. used 

high temperature freezing method to keep the initial liquid state of alloy, for analyzing the 

original solidification process
 
[9]. Thermo-calc and JMatPro software were also employed to 

calculate the liquid composition and equilibrium diagrams of Alloy 718, which can provide a 

variety of valuable solidification information and predict segregation during triple melting or 

casting
 
[9-10]. 
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Confocal scanning laser microscope (CSLM) offers a convenient way for conducting a real-time 

and continuous observation of phase transformations at high temperatures. Several studies using 

CSLM have been reported involving low carbon steel [11-14], stainless steel [15] and metallic 

glass
  
materials

 
[16]. Therefore, this novel equipment is applied to perform an in-situ observation 

of solidification process of Alloy 718. Furthermore, the microstructure and segregation behavior 

of the solidified CSLM samples are revealed in this study. 

 

Experimental Methods and Materials 

 

The detailed characteristics of CSLM have been described in the previous studies
 
[11]. The 

shallow undulation of sample surface caused by phase transformation and small difference of 

reflectivity between transforming phases, which could be sensitively detected by CCD image 

sensor of CSLM, making it possible to observe phase transformation process at high 

temperatures up to 1873 K [12, 17]. Simultaneously, the real-time pictures were recorded at a 

rate of 30 frames per second. Figure 1 shows the basic components of a confocal scanning laser 

microscope (1LM21H from Lasertec Corporation), which include microscope, metallurgy 

furnace, monitor, computer, protective air system, vacuum pump and circular water system. The 

specific CSLM equipment used in the current study employs a He-Ne laser with a wavelength of 

633 nm allowing for magnifications up to 2450X. 

 

 
Figure 1. Components of confocal scanning laser microscope (CSLM). 

 

Alloy 718 was produced by 10kg vacuum induction melting (VIM) furnace, with composition 

listed in Table 1. The CSLM samples, cylindrical in shape (4 mm in diameter and 3 mm in 

height), were mirror polished and placed into an alumina crucible. Then, the crucible was set in 

the heating position of metallurgy furnace. The temperature was controlled by a thermocouple 

attached to the crucible. When the heating temperature is reached, it will be kept constant within 

±1�. The continuous ultra pure argon (99.999%) was purged into the chamber in order to avoid 

the oxidation.  
 

Table 1 Chemical compositions of Alloy 718 (mass %) 

C P B Al Ti Mo Nb Cr Ni Fe 

0.05 0.004 0.0011 0.52 1.00 3.10 5.33 19.5 53.0 Bal. 
 

Since the purpose of this investigation is to observe the solidification process, differential 

scanning calorimetry (DSC) test was conducted to identify the temperatures of phase 

transformations during solidification, which then was the basis for setting observation 
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temperatures in the CSLM experiment. Figure 2 shows the DSC curve at the cooling rate of 

0.167 K/min. It may be seen in Figure 2 that the primary crystallization (first peak) took place at 

1610.5 K. The second peak and third peak were associated with precipitation of MC carbides and 

Laves phase. According to the above analysis, the CSLM samples were heated from room 

temperature to 1673 K in 480 s and be held for a further 300 s at 1673 K to obtain uniform liquid 

state. Afterwards, three cooling rates, of 0.083 K/min, 1.67 K/min and 3.33 K/min were 

investigated, as shown in Figure 3. Finally, the furnace was powered-off at 1373 K to let the 

samples cool to room temperature.  

Microstructural analysis was performed on polished longitudinal sections of three specimens.  

MC carbide morphology was examined by light microscope (LM, Leica DM-6000), and Laves 

phase was examined on electro-etched surfaces in scanning electron microscope (SEM, Tescan-

Vega) equipped with an energy dispersive spectrometry micro-analyzer (EDS, Bruker).  

 

 
Figure 2. Differential scanning calorimetry curve of the test alloy. 

 

 
Figure 3. Thermal cycles employed in current study. 
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Results and Analysis 

 

Solidification process at a cooling rate of 1.67 K/min 

 

Figure 4 illustrates the solidification process for Alloy 718 at a cooling rate of 1.67 K/min, 

obtained by CSLM. The temperature changes and real times are also displayed on the 

continuously recorded pictures. In the previous research, the crucible which holds the sample can 

provide a favorable site for heterogeneous nucleation in AISI304 stainless steel [15]. Similarly, 

seen from Figure 4, it is inferred that the solidification of Alloy 718 has commenced below the 

surface of the opaque melt and is gradually being revealed at the melt surface. With the 

temperature decrease the solid-liquid interface is moving toward inter-dendritic region coupled 

with the progressive decrease of the liquid pool areas. However, it is found that some remaining 

liquid still exists at the final solidification stage of primary crystallization. It is believed that 

these remaining liquid areas are the most segregated regions and therefore this severe 

segregation leads to the reduction of solidifying temperatures, which can explain why the 

remaining liquid can not solidify for long time in the CSLM observation. Unfortunately, the 

formation of Laves phase in the inter-dendritic region can not be observed because of the 

equipment capability. 

 

Since progressive decrease of the liquid pool areas happens in the solidification process, it is 

feasible to acquire the liquid fraction at the free surface by calculating the liquid area of each 

picture recorded in CSLM observation. Here, AutoCAD software is used to calculate the liquid 

area percentage and yield the relationship between liquid fraction and time as well as liquid 

fraction and temperature. Thus, the Avrami equation [18]
 
is utilized for fitting the curve and 

Figure 5 presents the results. The equation utilized to calculate the liquid fraction as a function of 

temperature is as follows:  
7 4.51 exp[ 2.21 10 ( 1543) ]

L
f T

−= − − × −                                         (1) 

The cooling rate in the present experiment is 1.67 K/min and the onset of solidification 

temperature is 1608 K, therefore the temperature (T, K) dependence of time (t, s) is according to 

the following equation: 

5
1608

3
T t= −                                                                (2) 

Therefore, the liquid fraction as a function of time can be obtained: 

7 4.55
1 exp[ 2.21 10 (65 ) ]

3
L

f t
−= − − × −

                                           (3) 

It is obviously seen from Figure 5 that there are three stages for L→γ solidification, which are 

here named as initial stage, stable stage and final stage respectively. After linear fitting of each 

stage, comparison can be made to demonstrate the characteristic of each stage, shown in Figure 

6. First, in the initial stage of L→γ solidification process, the solutes segregated little by little in 

the front edge of L/γ interface, resulting in the reduction of liquidus temperature. The L→γ phase 

transformation can only happen with the further decreasing of temperature. So, γ growing rate is 

0.004 s
-1

 for this stage. Secondly, L→γ transformation undergoes a more stable stage. At this 

stage, the L/γ interface is moving in a stationary speed and the γ growing rate is 0.083 s
-1

, almost 

20 higher of initial stage. Finally, when the remaining liquid pool areas become little, the phase 

transformation comes to the final stage. The segregated solutes in remaining liquid pool can not 

diffuse across the L/γ interface, so the segregation degree in the remaining liquid is rising 

dramatically, which leads to the low speed solidification again. For the last stage, γ growing rate 

is 0.016 s
-1

.  
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Figure 4. Confocal scanning laser microscopy in-situ observation of solidification process in 

Alloy 718 at cooling rate 1.67 K/min . 
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Figure 5. Fitted curve of liquid fraction as a function of temperature at cooling rate 1.67 K/min. 

 

 
Figure 6. Three stages for L→γ transformation at cooling rate 1.67 K/min. 

 

Microstructure analysis on solidified CSLM sample (cooling rate: 1.67 K/min) 

 

Figure 7(a) shows the typical microstructure of solidified CSLM sample. It can be seen that a lot 

of blocky Laves phase exist in the inter-dendritic region. MC carbides are also observed around 

the Laves phase, also in the inter-dendritic region. Figures 7(b)-(d) present the EDS spectrums of 

three different locations and approximate chemical compositions are listed in Table Ⅱ. According 

to Table 2, Nb and Mo are strongly enriched in the Laves phase. On the other hand, Nb and Mo 

are obviously poor in the area of dendrite core. MC carbide is mainly composed of two elements: 

Nb and Ti. 
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Figure 7. The microstructure of solidified sample after CSLM experiment (a) and the EDS 

spectrums of the Laves phase (b), dendrite core (c) and MC carbide (d). 

 

Table 2 Chemical compositions of representative phases or locations in solidified CSLM sample 

Location 
Chemistry (mass %) 

Ni Cr Fe Nb Mo Ti Al 

Spot A 35.17 14.48 13.53 28.23 7.01 0.98 0.6 

Spot B 52.95 21.01 18.89 3.51 2.43 0.71 0.5 

Spot C － － － 92.39 － 7.61 － 

 

 

 

 

Energy (keV) 

Energy (keV) Energy (keV) 

(b) 

(d) 

(c) 

Spot A: Laves phase

Spot C: MC carbide 

Spot B: Dendrite 

core 
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Solidification behavior analysis at different cooling rates 

 

Figure 8 shows the solidification process at three different cooling rates. It is evident that 

secondary dendrite arm spacing becomes finer with increasing cooling rate. 

 

 

 

 
Figure 8. Solidification process at three cooling rates (0.083 K/min, 1.67 K/min, and 3.33 

K/min). 

 

The secondary dendrite arm spacing (SDAS) is an important parameter in the solidified dendrite 

structures. Considering the direct impact of cooling rates, the SDAS will differ from each other 

for various cooling rates. Therefore, the variation of SDAS is investigated firstly. In order to 

obtain precise results, various levels of cooling rates are applied. Apart from the three cooling 

rates mentioned above, 0.167 K/min, 0.5 K/min and 0.833 K/min are also studied. In a classical 

equation given as Eq.4 [19], SDAS is available as a function of cooling rates. Figure 9(a) shows 

the values of SDAS, which indicates that the measured SDAS are in a good agreement with the 

classical equation.  
1 3

L Tβ
−• =  

                                                                 (4) 

Where L represents SDAS (µm); β is the constant for a fixed alloy; T
•

is the cooling rate (K/min). 

The linear fitting is conducted so as to get the value of β, which is shown in Figure 9(b). On the 

basis of this result, the prediction on SDAS of Alloy 718 can be made by the following equation. 
1 3

183.6L T

−• =  
                                                             (5) 

 

0.083 K/s 

1.67 K/s 

3.33 K/s 
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Figure 9. Secondary dendrite arm spacing at different cooling rates 

 

As stated before, MC carbide and Laves phase are two main segregation phases formed in the 

solidification process of Alloy 718. Figure 10 and Figure 11 show the change of two segregation 

phases in morphology at three different cooling rates. 

 

 

 
Figure 10. MC carbide morphology after solidification at various cooling rates 

(a) 0.083 K/min, (b) 1.67 K/min, (c) 3.33 K/min. 

 

In the case of  low cooling rate (0.083 K/min), it is seen in in-situ observation that the remaining 

liquid contacts each other, which can form segregation phases in large size eventually. There are 

two reasons to be addressed. Firstly, the solutes have enough time to segregate during the 

solidification at lower cooling rate. Secondly, relatively large SDAS gives enough room to form 

large segregation phases. While in the case of  high cooling rate (1.67 K/min and 3.33 K/min), 

no enough time and room is provided to form large segregation phases, which ends up with small 

blocky phases in the inter-dendritic area. 

 

(b) (c) 

(a) 

177



 

 
Figure 11. Laves phase morphology after solidification at various cooling rates 

(a) 0.083 K/min-SE, (b) 1.67 K/min-BSE, (c) 3.33 K/min-BSE. 

  

Conclusions 

 

Confocal scanning laser microscope was successfully employed to investigate the Alloy 718 

solidification process  The microstructure evolution and segregation characteristic were also 

investigated at different cooling rates. The following conclusions can be made from this study: 

 

1. According to the in-situ observation, three stages can be defined for L→γ transformation of 

Alloy 718: initial stage, stable stage and last stage. When solidified at the cooling rate of 1.67 

K/min, the γ growing rates of three stages are 0.004 s
-1

, 0.083 s
-1

, and 0.016 s
-1

, respectively. 

 

2. The secondary dendrite arm spacing (L, µm) of Alloy 718 is dependent of the cooling rate 

(K/min) and may be described by the following equation: 

                   

1 3

183.6L T

−• =  
   

 

3. The cooling rate has a great impact on the morphology of MC carbide and Laves phase. The 

sizes of MC carbide and Laves phase are smaller with the increase of cooling rate, which is 

directly proved by the in-situ observation results. 
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