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Abstract 

 

In recent years, high strength and good weldability of steels have been required for building 

structures. Hyundai Steel Company has developed a series of construction steels ranging from 

550 to 800 MPa tensile strength class, with 450 to 650 MPa yield strength. A microstructure of 

low-C bainite was obtained by using thermomechanical controlled rolling with accelerated 

cooling. These steels achieved the required mechanical properties (high strength, low yield/UTS 

ratio) and demonstrated satisfactory weldability up to 100 mm thickness. In 2012, these steels 

were successfully used in the construction of the “Federation of Korean Industries” building. 

 

Introduction 

 

Over the last several years, increasing attention has been paid, in both the steel and construction 

industry, to the importance of developing higher strength steel for constructing high-rise 

buildings. Meanwhile, the ability to produce heavier plate for structural parts has become another 

important issue, especially for structural steels, for which it has been regulated in certain 

standards that they possess a low yield ratio (yield/tensile strength) as a safeguard against 

seismic activity.  

 

In Japan, the earthquake which took place in Kobe inspired interest in seismic design using 

structural steels. Furthermore, it has now been stipulated in Japanese Industrial Standards to 

produce anti-seismic steels to safeguard buildings from unforeseen disasters. 

 

Since the year 2000, the Korean Standards body (KS) has applied similar rules to the SN series 

of steels used for building construction. On the back of the efforts above, KS has carried out an 

examination of high performance rolled steels for building structures (KS D 5994), as used in 

constructing higher skyscrapers.  

 

Responding to this demand, Hyundai Steel Company has successfully deployed, on a 

commercial scale, an anti-seismic steel with an SMYS (Specified Minimum Yield Strength) in 

the range 325-355 MPa. In addition to that, a YP 450 MPa grade steel, with excellent toughness 

and weldability, has been used in constructing the “Federation of Korean Industries” building 

(Figure 1). Additionally, YP 650 MPa grade structural steels are under development to use in 

constructing higher skyscrapers. 
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Figure 1. “Federation of Korean Industries” building. 

 

Development of YP 450 MPa Grade Steel 

 

Development Concept 

 

Table I shows the chemical composition of the developed YP 450 MPa grade steel. 

 

Table I. Chemical Composition of YP 450 MPa Grade Steel 

Thickness (mm) 
Chemical Composition (wt.%) 

C Si Mn P S Ceq Others 

100 ≤0.06 ≤0.30 ≤1.60 ≤0.020 ≤0.006 0.39 Cu, Ni, Nb, Ti, B 

 

Table II. Mechanical Properties of YP 450 MPa Grade Steel 

Location YP (MPa) TS (MPa) YR (%) El. (%) vE-5°C (J) 

1/4t 511 654 78 27 278 

1/2t 482 633 76 26 227 
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The alloy composition was designed to give an optimum value of high strength with good 

toughness and weldability and was based on a low C-Si-Mn composition with microalloying. 

 

For the purpose of improving mechanical properties, TMCP was applied in the production of the 

steel. TMCP is a well known process used to attain high strength and good toughness for steel 

plates with a lean alloy composition
 
[1-4]. The excellent properties of the TMCP steel resulted 

from a fine microstructure obtained by controlled rolling and accelerated cooling. By using the 

TMCP process, a microstructure was produced which exhibited a low yield/tensile ratio and 

continuous yielding behavior [5]. 

 

Mechanical Properties of Base Material 

 

Table II shows the mechanical properties of the base material, YP 450 grade steel. Similar to 

SM570 as specified in KS, the yield and tensile strength of the steel are in the range 

482-511 MPa and 633-654 MPa respectively. In the case of Charpy V-notch energy (Figure 2), 

values above 200 J at -5 °C were attained. A low yield ratio of 76-78% was also achieved. The 

microstructure of the high strength steel, YP 450 MPa grade, is illustrated in Figure 3. The 

developed steel is made up of mostly bainitic ferrite with other components, such as MA 

constituent. The low yield ratio is achieved by the presence of these MA islands resulting in 

continuous yielding behavior
 
[6-8]. 

 

 

Figure 2. Charpy transition curve of YP 450 MPa steel. 

(Points represent individual values and the line represents the average.) 
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Figure 3. Microstructure of YP 450 MPa steel. 

 

Weldability and Properties of Developed Steel 

 

The welding processes used to test the weldability of the developed steel were FCAW (Flux 

Cored Arc Welding) and SAW (Submerged Arc Welding). The test plate was welded at a heat 

input of 19.2 kJ/cm (FCAW) and 46.1 kJ/cm (SAW). Table III shows the welding conditions 

used for each welding method and Figure 4 shows the Charpy impact values of the heat affected 

zone for each welding process. 

 

The Charpy impact test results from the heat affected zone were all over 80 J at -5 °C. The 

maximum hardness value of the weld zone was 258 HV for the FCAW or SAW welding process. 

The overall results show that the developed steel has good weldability. 

 

Table III. Welding Conditions for each Welding Method 

 

Thickness 

(mm) 
Welding Angle 

Groove 

Type 
Consumable 

Current 

Amps 

Voltage 

Volts 

Speed 

cm/min 

Heat 

Input 

kJ/cm 

100 

FCAW 60° X 
Supercored 81K2 

(Ø1.4 mm) 
280 32 28 19.2 

SAW 60° X 
Superflux 600/A-3 

(Ø3.2 mm) 
700 34 31 46.1 
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Figure 4. Charpy impact energy values of Weld Metal and Heat Affected Zone. 

 

Application of the Developed Steel 

 

The developed YP 450 MPa grade steel was used for constructing the “Federation of Korean 

Industries” building (Figure 1), scheduled for completion in 2013. The plates were used for the 

belt truss and outrigger of the building with a thickness of 100 mm with approximately 

1,300 tons of plates used. 

 

Development of YP 650 MPa Grade Steel 

 

Development Concept  

 

Table IV shows the chemical composition of the developed YP 650 MPa grade steel. With the 

addition of Mo and Mn, the strength was increased by approximately 200 MPa in comparison to 

the YP 450 MPa steel grade. 

 

The YP 650 MPa steel was developed with a well designed low C-microalloyed chemistry and 

TMCP+AC technology, to have high strength with good toughness and weldability. 

 

Table IV. Chemical Composition of YP 650 MPa Grade Steel 

Thickness (mm) 
Chemical Composition (wt.%) 

C Si Mn P S Ceq Others 

50 ≤0.08 ≤0.30 ≤2.00 ≤0.020 ≤0.006 0.55 Cu,Ni,Nb,Ti,B,Mo 

173



Mechanical Properties of Base Material 

 

Table V shows the mechanical properties of the YP 650 MPa structural steel: Yield strengths of 

690-744 MPa, tensile strengths of 859-905 MPa and favorable yield/tensile ratios (80-82%) were 

obtained. Moreover, Charpy V-notch absorbed energies above 230 J at -5 °C, according to 

KS HSA800 were attained (Figure 5). The microstructure of the developed steel (Figure 6) is 

composed of mainly bainite and a small amount of MA constituent.  

 

Table V. Mechanical Properties of YP 650 MPa Grade Steel 

Location YP (MPa) TS (MPa) YR (%) El. (%) vE -5 °C (J) 

1/4t 744 905 82 20 236 

1/2t 690 859 80 20 253 
 

In general, if the percentage of martensite or MA increases, the yield ratio rises simultaneously 

due to the continuous yielding phenomenon. Thus, a low yield ratio could be maintained by 

controlling the amount of MA constituent. 

 

  

Figure 5. Charpy transition curve of YP 650 MPa steel. 

(Points represent individual values and the line represents the average.) 
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Figure 6. SEM image of YP 650 MPa steel. 

 

Conclusions 

 

1. The Hyundai Steel Company has developed an anti-seismic steel having a SMYS 

(Specified Minimum Yield Strength) of 450 MPa and TS of 650 MPa by adopting TMCP 

technology with an optimized alloy design. 

 

2. High strength with a low YR, good impact toughness and good weldability can be obtained 

by controlling the ratio of bainite, ferrite and MA and by utilization of TMCP.  

 

3. The YP 450 MPa grade steel was used in the construction of the “Federation of Korean 

Industries” building and the YP 650 MPa grade steel will be applied to higher skyscrapers 

as a construction material. 
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