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Abstract 

 

This paper presents and discusses the development of high strength steel plates with 780MPa 

in tensile strength that are suitable for building construction use. Such plates provide an 

excellent combination of high strength, toughness, deformability and weldability. The key 

technology to obtain the excellent combination in mechanical properties is the 

microstructural control of the martensite-austenite (M-A) constituent and the bainitic ferrite 

dual-phase structure through on-line heat treatment immediately after accelerated cooling 

during Thermo-Mechanical Controlled Processing (TMCP). 

 

The developed steel plates exhibit microstructures of fine M-A dispersed in the bainitic ferrite 

matrix and basic metallurgical investigations revealed that the transformation behaviour and 

microstructural morphologies were varied with the cooling step temperatures before the on-

line heating and the on-line heating temperature itself. The paper also briefly discusses the 

trial production of the developed 780MPa grade steel plate which demonstrated satisfactory 

combinations of high strength, low yield ratio, toughness and weldability. 

 

 

Introduction 
 

The recent increased demands for larger-scale and longer-span design in high-rise buildings 

have promoted the application of high strength steels for building construction [1-5]. In 

response to these demands, JFE Steel has developed a series of high performance steel 

products for buildings as shown in Figure 1. So far, the tensile strength of steel plates applied 

for building construction in Japan is typically up to 590MPa (440MPa in the yield stress), due 

to many restricting factors such as price and weldability. To provide resistance to fracture 

during earthquakes, the low yield ratio (yield stress / tensile strength), typically lower than 

80%, is preferable to steel plates for building construction [6,7], as registered in Japanese 

Industrial Standards (JIS G 3136). However, it is quite difficult to obtain low yield ratio in 

high strength steels, even in the 590MPa grade steel plate. Complex multiple heat treatments 

in the manufacturing process to achieve low yield ratios results in an increase in production 

cost and prolong delivery times.  

 

To prevent these problems, JFE Steel developed 550MPa (385MPa in the yield stress) grade 

steel plate, “HBL385” [8,9]. Although the yield stress and tensile strength of the developed 
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steel is higher than 520MPa grade steel by 30MPa, the carbon equivalent (Ceq) is same as 

those of 520MPa grade steel. This is achieved by the application of Thermo-mechanical 

control process (TMCP) with “Super-OLAC”, an advanced accelerated cooling system [10, 

11], and by the addition of Nb without any heat treatment. Therefore, the weldability of the 

developed 550MPa grade steel is equal to that of 520MPa grade steel, and it is possible to 

reduce the welding cost in steel frame fabrication compared with that of 590MPa grade steel. 

Accordingly, in comparison with the conventional grade steels, such as 520MPa grade and 

590MPa grade steels, the total fabrication cost of the steel frame is minimized by the 

reduction of steel weight, welding time, transportation cost and easiness of welding 

procedures. Figure 2 shows an example of frame fabrication cost ratio and steel weight ratio 

with the variation of steel grade. As the superiority of “HBL385” has been highly evaluated, 

it is now widely used in prestigious large buildings in Japan.  
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Figure 1. Series of steel plates for buildings in JFE Steel. 
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Figure 2. An example of frame fabrication cost ratio and steel  

weight ratio with a variation of steel grade (SN490 = 1.0).  

 

Where higher strength steel is necessary, 780MPa grade steel is very effective; however there 

have been few applications of this grade steel. One of the reasons is that the complex multiple 

heat treatments are a necessity for manufacturing 780MPa grade steel plates with a low yield 

ratio. In addition, since greater amounts of alloying elements are added to obtain higher 

strengths, not only the alloy cost, but also toughness and weldability are intrinsic problems to 

be solved for commercial products. 

 

In this study, high strength steel plates with 780MPa in tensile strength by the on-line process 
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without any off-line heat treatments have been developed. The developed steel plates show 

excellent combination of high strength, toughness, low yield ratio and weldability. The key 

technology to obtain the excellent combination in mechanical properties of the steel is the 

microstructural control of M-A (martensite-austenite) constituent and the bainitic ferrite dual-

phase structure [12-17], through the on-line heating immediately after the accelerated cooling 

in TMCP. The heat treatment on-line process, “HOP”, enables microstructural control [11]. 

“HOP” is the induction heating device installed next to the accelerated cooling as described 

in previous literatures [18,19]. The resultant steel plates have a microstructure of fine M-A 

particles dispersed in the bainitic ferrite matrix.  

 

Effects of manufacturing conditions, such as the cooling stop temperature before the on-line 

heating, and the on-line heating temperature, on microstructural characteristics and the 

resultant mechanical properties have been investigated systematically. Formation mechanism 

of the M-A and bainitic ferrite dual-phase structure, and morphological changes in the 

microstructure depending on the manufacturing conditions was discussed in terms of 

concentration of carbon into the untransformed austenite during the on-line heating after 

accelerated cooling. 

 

 

Experimental Procedures 

 

Chemical composition and CCT diagram 
 

The chemical composition of the steel employed is given in Table 1. The steel contains 0.06% 

of carbon, 2% of manganese, and small amount of other alloying elements, such as Cu, Ni, 

Cr, Nb, V and Ti. These alloying elements are added to achieve high strength and excellent 

toughness. The steel ingot of about 150kg in weight was prepared by a laboratory scale 

induction melting furnace. The obtained ingot was hot-rolled to 100mm in thickness. 

Samples for thermal cycle tests and hot-rolling tests were taken from the 100mm-thick slab. 

 

Figure 3 shows the continuous cooling transformation (CCT) diagram for the steel after hot 

deformation. The bainite transformation starting temperature (Bs) was changed from about 

400 to 600
o
C with a decrease in the cooling rate from 40 to 0.5ºC/s. 

 
Table 1. Chemical composition of the steel studied. 

 

C Si Mn P S Others 

0.061 0.20 2.03 0.012 0.0020 Cu, Ni, Nb, V, Ti 
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Figure 3. CCT diagram of the steel used. 

 

 

Transformation behavior during isothermal holding and the following heat treatment 

after accelerated cooling 
 

In order to clarify transformation behavior of supercooled austenite during the isothermal 

holding after the accelerated cooling, the samples were reheated to 900
o
C for 300s, followed 

by rapid cooling to various temperatures ranging from 350 to 600
o
C with a cooling rate of 

50
o
C/s, and isothermally held at each temperature for 10 to 1,000s, then quenched (Figure 4). 

 

To investigate transformation behavior during the following heat treatment, the samples were 

reheated to 900
o
C for 300s, followed by rapid cooling to 500

o
C with a cooling rate of 50

o
C/s. 

Then, the samples was isothermally held at 500
o
C for 10s, then reheated to 650

o
C with a 

heating rate of 15
o
C/s and held at the temperature for 10s, followed by cooling to the ambient 

temperature with a cooling rate of 0.5
o
C/s. The other sample was accelerated cooled to 500

o
C 

and isothermally held at the temperature for 30s, then cooled to the ambient temperature with 

a cooling rate of 0.5
o
C/s for comparison (Figure 5). 

 

Microstructural observations by scanning electron microscopy (SEM), dilatation 

measurements and hardness measurements were carried out in order to understand 

transformation behavior from supercooled austenite to bainite during the isothermal hold and 

the following heat treatment. To distinguish the M-A, two-stage electrical etching was 

conducted in metallography [20]. 
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Figure 4. Heat pattern of isothermal transformation tests. 

 

 

0.5℃/s

900oC

60s 300s

50oC/s

500oC

10s

650oC

10s10s

0.5℃/s

900oC

60s 300s

50oC/s

500oC

10s

650oC

10s10s
 

 
Figure 5. Heat pattern of accelerated cooling isothermal holding and reheat treatment. 
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Laboratory scale hot-rolling and mechanical properties 
 

Figure 6 shows the schematic diagram of production conditions of the laboratory hot rolled 

plates. The samples with 100mm in thickness were reheated to 1,150
o
C for 1h, followed by 

hot rolling to 25mm-thick plates. The finishing temperature was 850
o
C. The samples were 

accelerated cooled immediately after the hot rolling to various temperatures ranging from 400 

to 600
o
C around the Bs (bainite start) temperature. Then, the samples were reheated from the 

temperatures to 650
o
C, and air cooled to the ambient temperature. Tensile tests and Charpy 

impact tests were performed to investigate microstructure-property relationships in the steels. 

 

1150oC

1h

AcC

400-600oC
AC

650oC

FT:850oC

 
 

Figure 6. Schematic diagram of production conditions of laboratory scale plates. 

 

 

Results and Discussion 

 
Transformation Behavior during Isothermal Holding 
Figure 7 shows dilatation curves during isothermal holding at 400, 500 and 600

o
C for 100s, 

after accelerated cooling with a cooling rate of 50
o
C/s. Marked expansion generated by 

transformation from austenite to bainite or martensite was observed as shown in the figures. 

The transformation rate at the isothermal holding at 600
o
C was sluggish compared with the 

ones at the lower temperatures, and the transformation seemed to be stagnated at the 100s 

holding.  

 

Typical SEM micrographs for the samples isothermally held at 400, 500 and 600
o
C for 100s, 

followed by quenching are shown in Figure 8. Microstructure in the sample isothermally held 

at 400
o
C appeared to be mixture of lower bainite and tempered martensite (Figure 8(a)). The 

sample isothermally held at 500
o
C showed an upper bainite structure containing a large 

amount of M-A (Figure 8(b)). The upper bainite structure is considered to form by the 

isothermal transformation at the temperature. The volume fraction of M-A was about 8% in 

the sample. The sample isothermally held at 600
o
C also showed an upper bainitic structure 

(Figure 8(c)). However, the microstructural morphology was polygonal compared to the one 

isothermally held at 500
o
C. The volume fraction of M-A was about 20% in the sample.  

 

As observed in the micrographs, the volume fraction of M-A increased with a rise in the 

isothermal holding temperature around the Bs, and the microstructural morphology became 

polygonal. 
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Figure 7. Dilatation curves of the steels during isothermal holding at 400, 500 and 600
o
C for 100sec. 
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Figure 8. Microstructure of the steels after isothermal heat treatment at 400, 500 and 600
o
C for 100sec. 

 

Figure 9 shows the dilatation curves after the isothermal holding and reheating. The sample 

directly cooling after the isothermal holding at 500
o
C (pattern (a)) did not show clear 

expansion by the transformation during cooling with the cooling rate of 0.5
o
C/s. On the other 

hand, the sample reheated at 650
o
C (pattern (b)) showed marked expansion at around 350

o
C 

due to the transformation. 
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Figure 9. Dilatation curves after isothermal holding and reheating. 
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Microstructural Change by Heat treatment after Accelerated Cooling and Isothermal 

Holding 

 
Figure 10(a) shows a typical SEM micrograph for the sample isothermally held at 500

o
C, and 

cooled to the ambient temperature with a cooling rate of 0.5
o
C/s. The sample appeared to 

have mixed microstructure of polygonal ferrite and upper bainite containing M-A, which is 

seen as bright region in the micrograph. It is considered that the untransformed austenite 

transformed to polygonal ferrite during the slow cooling after the isothermal holding. The 

carbon concentration to the untransformed austenite seemed to control the transformed 

structure, M-A or polygonal ferrite. 

 

Figure 10(b) shows a SEM micrograph for the sample isothermally held at 500
o
C, followed 

by heating to 650
o
C and cooling to the ambient temperature with a cooling rate of 0.5

o
C/s. A 

large amount of M-A observed in the sample suggests that the most of untransformed 

austenite transformed to M-A during the slow cooling to the ambient temperature, due to 

highly concentrated carbon into the untransformed austenite during the heat cycle. 
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Figure 10. Effect of reheat treatment after rapid  

cooling and isothermal holding on Microstructure. 

 

 

Furthermore, the authors examined the effect of carbon distribution on the transformation 

behavior by reheat treatment after Accelerated Cooling and Isothermal Holding. Figure 11 

shows the result of area analysis of carbon by EPMA after the isothermal holding at 500
o
C. 

Distribution of carbon is relatively homogeneous as shown in this map. On the other hand, 

partition of carbon is clearly observed in the sample reheated at 650
o
C. The carbon 

concentrated regions seem to be transformed to M-A, and other regions seem to be bainitic-

ferrite structure. Based on these observations, we assumed that the carbon concentration to 

the untransformed austenite controlled the transformed structure, M-A or bainitic ferrite. In 

this complex process of thermal cycles, it is thought that the role of Nb is to promote the 

formation of M-A.  
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Figure 11. Effect of carbon distribution on transformation behavior. 

 

Figure 12 shows schematic illustration of microstructural change during the heat cycle. The 

heat cycle consists of three stages. The first stage is the accelerated cooling to the temperature 

just above the Bs temperature and the isothermal holding at the temperature. At this stage, the 

microstructure consists of bainite and untransformed austenite. The second stage is heating 

from the temperature of isothermal holding to, for example, 650
o
C. At this stage, carbon 

concentrates into the untransformed austenite. The supersaturated carbon and dislocation 

density in bainite also decrease at this stage, simultaneously. The final stage is cooling from 

the heating temperature. As the carbon concentration into the untransformed austenite is high 

enough to be transformed to M-A, the dual phase structure of dispersed M-A in bainitic 

ferrite matrix can be obtained even in slow cooling. 
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Figure 12. Schematic illustration of microstructure change in the  

reheat treatment for dual phase microstructural control.

115



Effect of M-A on Mechanical Properties 
 

Figure 13 shows the effect of volume fraction of M-A on tensile properties and impact 

toughness in 25mm-thick plates, produced by a laboratory scale hot-rolling mill with the 

following simulated thermal cycle. The tensile strength monotonically increased with an 

increase in the volume fraction of M-A. On the contrary, the yield strength decreased with an 

increase in the volume fraction of M-A. This is probably due to dense mobile dislocations 

around the M-A, which are generated by volume expansion at the transformation. As a result, 

the yield ratio dramatically decreased from about 90 to 65% with the increase in the volume 

fraction of M-A from 1 to 25%. As for the impact toughness, absorbed energy at 0
o
C 

gradually decreased from about 200 to 100J with the increase in the volume fraction of M-A. 

It is noted that to obtain the excellent combination of tensile properties and impact toughness, 

the volume fraction of M-A should be controlled to the optimal range from 5 to 15%. 
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Figure 13. Effect of volume fraction of M-A on mechanical properties. 

 

 

Trial Production of Developed 780MPa Steel Plates 
 

Mechanical Properties 
Based on the basic research on microstructural control of the M-A and bainitic ferrite dual-

phase structure, trial production of the developed 780MPa grade steel plates was made by the 

plate mill, combining “Super-OLAC” and “HOP”, which were installed at West-Japan Works, 

JFE Steel Corporation [11]. Thickness of the manufactured plates was 12, 25 and 40 mm. 

 

Table 2 shows chemical analysis results for the produced plates. The Ceq and Pcm values of 

the plates were 0.54 and 0.24, respectively. Typical mechanical properties of the plates are 

shown in Table 3. The obtained plates satisfied the target properties in tensile and Charpy 

impact tests, namely, yield strength over 650MPa, tensile strength over 780MPa, yield ratio 

under 80% and the Charpy absorbed energy at 0
o
C over 70J. 

 

Figure 14 shows typical stress-strain curves of the newly developed 780MPa grade steel plate 

at 40mm thickness compared against conventional plates at the same grade and thickness. 

The yield strength of the developed steel plate is lower than that of the conventional one, 

although the both curves do not show apparent Luder’s elongation. The uniform elongation of 

the developed plate, over 8%, is greater than that of the conventional one. 
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Figure 15 represents typical hardness distributions in a 25mm-thick plate through the 

thickness, showing quite uniform hardness distributions with hardness value of about 280 in 

Vickers scale (HV).  

 
Table 2. Chemical compositions of newly developed steel plates (mass%). 

 

C Si Mn P S Others Ceq PCM 

0.06 0.18 1.98 0.011 0.002 Cu, Ni, Cr, Nb, V, Ti 0.54 0.24 

Ceq=C+Si/24+Mn/6+Ni/40+Cr/5+Mo/4+V/14 

PCM=C+Si/30+Mn/20+Cu/20+Ni/60+Cr/20+Mo/15+V/10+5B 
 

 
Table 3. Mechanical properties of newly developed steel plates. 

 

t (mm) YS (MPa) TS (MPa) El (%) YR (%) vE0oC (J) 

12 688 923 23 75 188 

25 703 912 33 77 216 

40 665 852 36 78 199 

Target >650 >780 >16 <80 >70 

Tensile test: Full thickness (JIS No.5)-transverse, Charpy test: 1/4t-transverse 
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Figure 14. Typical stress-strain curve of newly developed  

780MPa steel and conventional 780MPa steel. 
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Figure 15. Typical hardness distribution of 25mm steel plate through the thickness. 
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Weldability 

 
Figure 16 shows the maximum hardness test results for the 25mm-thick plate, which was 

performed in accordance with the JIS standards (JIS Z 3101). The maximum hardness 

increased with a decrease in the bead length. Although the maximum hardness at the bead 

length of 0 (arc strike) was 356HV, the maximum hardness values with bead length over 

10mm were under 350HV. These low values in the maximum hardness tests as 780MPa grade 

plates are attributed to the alloy design with the low carbon content and Ceq value. 

 

Table 4 shows the y-groove weld cracking test results for the 25mm- and 40mm-thick plates, 

which was performed in accordance with the JIS standards (JIS Z 3158). According to the 

test results, the preheat temperature to avoid cold cracking in CO2 welding is 25
o
C or lower, 

showing excellent weldability of the plates. 
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Figure 16. Result of maximum hardness test for 25mm steel plate. 

 

 
Table 4. Results of y-groove weld cracking tests for 25 and 40mm steel plates. 
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Performance of Welded Joint 
 

Since CO2 welding and SAW (sub-merged arc welding) are mostly used in joining 

"diaphragm"-"column" and "column"-"column" in building construction, mechanical 

properties of welded joints by CO2 welding and SAW welded under the typical conditions 

were examined. Table 5 shows tensile and Charpy impact test results for the welded joint by 

CO2 welding with heat input of 2.1kJ/mm. The mechanical properties were satisfactory, with 

tensile strength over 780MPa, and impact energy at 0
o
C over 70J for all the notch position.  
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Table 6 shows tensile and Charpy impact test results for the welded joint by SAW with heat 

input of 4.6kJ/mm. The excellent properties were also obtained in this welded joint, with 

tensile strength over 780MPa, and impact energy at 0
o
C over 70J for all the notch position. 

 
Table 5. Welding conditions and mechanical properties of CO2 welded joint. 

 

 
Table 6. Welding conditions and mechanical properties of SAW welded joint. 

 

Conclusions 
 

(1) High strength steel plates with 780MPa in tensile strength, which were suitable for 

building construction taking seismic design into account, have been developed. The steel 

plates have excellent combination of high strength, toughness, low yield ratio and 

weldability. The key technology to obtain the excellent combination in mechanical properties 

is the microstructural control of the M-A (martensite-austenite constituent) and bainitic ferrite 

dual-phase structure, through the on-line heat treatment immediately after the accelerated 

cooling. The developed steel plates have microstructure of fine M-A particles dispersed in the 

bainitic ferrite matrix. 

 

(2) Trial production of the developed 780MPa grade steel plates was made by the actual plate 

mill, combining “Super-OLAC” and “HOP”. The obtained plates showed excellent 

mechanical properties, with yield strength over 650MPa, tensile strength over 780MPa, yield 

ratio under 80%, uniform elongation over 8% and Charpy impact energy over 70J at 0
o
C. 

 

(3) The excellent weldability of the developed 780MPa grade steel was confirmed by the 

maximum hardness test and y-groove weld cracking test performed in accordance with the 

JIS. Mechanical properties of welded joints made by CO2 welding and SAW were also 
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satisfactory, with tensile strength over 780MPa, and impact energy at 0
o
C over 70J for all the 

notch position. 
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