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Abstract

There is significant need for Ni-based superalloys in the next generation automotive engine
components such as exhaust valves. High temperature, high cycle fatigue life is one of the
important properties required for such applications. The focus of this work is to evaluate the
effect of microstructure on the high cycle fatigue properties of two Ni-based alloys, alloy 751, an
alloy used in these applications at lower temperatures, and Waspaloy. High cycle fatigue lives of
the alloys were evaluated using in-situ high temperature fully reversed fatigue tests at 870°C and
a nominal frequency of 30 Hz. Scanning electron microscopy and transmission electron
microscopy were used to characterize the microstructure of the alloys. Computational modeling
was used to calculate the equilibrium microstructure and microstructural coarsening at 870°C.
Correlation of fatigue properties with microstructure of the alloys shows that for the
experimental conditions used in the study, the fatigue life of Waspaloy, which has greater high
temperature strength and larger y’ volume fraction, is better than that of alloy 751.

Introduction

There has been a significant interest in recent years in understanding the fatigue performance of
materials in the Very High Cycle Fatigue (VHCF) range or Ultrahigh-cycle fatigue range
(UHCF) with typical lifetimes greater than 10" cycles. In this range of lifetimes, it has been
emphasized that fatigue crack initiation becomes much more important than crack propagation
[1]. Fatigue failures have been observed at stresses below the conventional high cycle fatigue
limit, resulting in significant motivation to understand the microstructural origins of such failures
[1,2]. The role of microstructural characteristics on crack initiation in the VHCF regime has been
studied in a wide range of materials, including polycrystal and single crystal Ni-based
superalloys [1-3].

Very high cycle fatigue life at high temperatures is an important property for automotive

components such as exhaust valves. With the demand for increased thermal efficiencies in
engines, there is a need for materials to withstand higher operating temperatures and pressures
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while providing satisfactory fatigue life. In addition to bulk microstructural characteristics the
role of surface oxides also has to be considered in evaluating the high temperature fatigue life of
alloys [4]. The purpose of this study is to evaluate the high temperature very high cycle fatigue
life and the role of microstructure on the life of two common Ni-bases superalloys, alloy 751 and
Waspaloy.

Experimental Methods

Commercially available Waspaloy was obtained in the form of round bars of diameter 0.635” in
the annealed condition and subjected to a two-step heat-treatment consisting of 840°C/4 hrs/air
cool followed by a 760°C/16 hrs/air cool in sealed quartz tubes. Alloy 751 heat-treated using a
multi-step heat-treatment process with final aging performed at 780°C was obtained from an
industrial partner in the form of round bars 0.875” diameter. Table 1 shows the major elemental
compositions of the two alloys used in the study. Typical mechanical properties of alloy 751 at
871°C are yield strength of about 352 MPa and a tensile strength of about 394 MPa whereas that
of Waspaloy are yield strength of about 572 MPa and a tensile strength of about 580 MPa.

Table 1. Nominal composition (wt. %) of the two alloys used in the study

Alloy C | Mn | Si Cu| Cr | Mo | Co | Al | Ti |Fe|[Nb| V | Zr | Ni
Alloy 751 | 0.04 | 0.04 | 0.08 | 0.04| 16 |0.01/0.03]|12]23|82[09|01] - |Bal
Waspaloy | 0.03 | 0.03 ] 0.03 0.02 193 42 |125]|13]30|16] - - 1 0.05 | Bal.

In-situ high temperature uniaxial fatigue tests were conducted in a servohydraulic test machine,
rated at 50 kip maximum load for the frame, and with a 20 kip actuator. Grips were aligned to
less than £0.001 to ensure both concentricity and angularity. A three zone temperature controlled
furnace system with resistance heaters was used to heat the specimens. Heat up was achieved in
about 45 minutes and heat soak of 30 minutes was used before test initiation. Temperature was
controlled at 870°C +3°C using wire wrapped type-K thermocouples with the ASTM wire
wrapped attachment method. All tests were conducted in air. The 407 internal function generator
was used to achieve loading waveform and speed (Sine and 30 Hz). Amplitude control was
activated in less than 30 seconds after test initiation. Interlocks on the 407 detected specimen
failure (rapid stroke movement) and shut down the test, thus determining the cycles to failure.
Figure 1 shows a schematic of the specimens used in the study.
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Figure 1. Schematic of specimens used for in-situ high temperature, uniaxial fatigue tests

Microstructural characterization was performed on material obtained from the gage length of the
mechanical test specimens. Optical, scanning and transmission electron microscopy were used to
characterize the microstructure of the specimens over different length scales. Secondary (SE) and
back-scattered electron images (BSE) were used to characterize volume fraction, size and
morphology of y’ precipitates. Transmission Electron Microscope (TEM) images were obtained
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by orienting the specimens to the [001] zone axis. TEM images were obtained from regions
representative of the microstructure but with lower dislocation densities. Quantitative image
analysis using Image Pro was used to characterize the area fraction of y* and the average size of
v’ in a plane section. Average particle size in the TEM images from obtained from the manual
measurement of the individual particle sizes in the TEM images using Image Pro.

Results

Figures 2 (a) and 2 (b) show the phase equilibria predictions from equilibrium thermodynamic
calculations as a function of temperature obtained using JMatPro v 4.1 [5] and Ni-database [6]
for the compositions of the two alloys shown in Table I. Calculations show that y’ is the
dominant second phase which acts as the major strengthening phase in both alloys. Additionally
MC and My3Cs type carbides are present in both alloys. An analysis of the phases present at
870°C shows that the equilibrium y’ content in Waspaloy is about 16.7 wt. %, being greater than
that of Alloy 751 for which the y* content was calculated to be 7.7 wt. %. Calculated coarsening
rate of y* precipitates in alloy 751 is 26.6 nm/h'® greater than that of Waspaloy (about 25
nm/h*®) at the temperature of interest.
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Figure 2. Results of thermodynamic calculations showing effect of temperature on the phases
present in equilibrium as a function of temperature in (a) alloy 751 and (b) Waspaloy. Note
that the predicted amounts of y* precipitates is larger in Waspaloy.
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Figures 3 (a) and (b) show optical images obtained from alloy 751 and Waspaloy in the aged
condition. Note that the average grain size of alloy 751 is smaller than that of Waspaloy.
Presence of a mixture of large grains and small grains indicating some abnormal grain growth
can be observed in the Waspaloy specimen, consistent with previous observations [7].

(b)

Figure 3. Optical micrograph showing microstructure of (a) Alloy 751, and (b) Waspaloy in
the aged condition. Grain size of Waspaloy specimens used in the current study is larger
than the grain size in 751 specimens along with some evidence of abnormal grain growth.

Figure 4 (a) shows a cross-sectional SEM image obtained from the gage length region of an alloy
751 specimen that failed after about 3.9 x 10° cycles (36.6 hours of exposure at 870°C). Image
analysis shows that the volume fraction (equal to the area fraction) of y’ in this condition was
about 6.3% with the average size measured from the image of about 64 nm. Figure 4 (b) shows a
TEM image obtained from the gage length of another specimen from alloy 751 that failed after
19 x 10° cycles (~177 hours). Analysis of the TEM image shows the presence of particles with
an average size of about 151 nm, indicating significant coarsening of y’ during the longer
duration of the fatigue test. Figure 5 (a) shows an SEM image obtained from the gage length
region of a Waspaloy specimen that failed after 2.3 x 10° cycles (22 hours of exposure at 870°C).
Analyses of SEM images show that the volume fraction of y” in this condition was about 17.1 %.
Figure 5 (b) shows a TEM image obtained from the gage length of another specimen alloy
Waspaloy specimen that failed after about 55x10° cycles (512 hours) which shows an average
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size of 198 nm. Comparison of the TEM images obtained from alloy 751 and Waspaloy
specimens (figures 4(b) and 5 (b)) shows that the vy’ precipitates in alloy 751 evolves to be
cuboidal in shape while the y’ in Waspaloy is spherical/ellipsoidal consistent with the larger
magnitude of y-y’ misfit (defined as 2(a,-a,)/a,+a,) in alloy 751 calculated using JMatPro to be ~
0.44% compared to that of Waspaloy calculated to be about 0.14%.
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Figure 4 (a). Back-scattered SEM image showing y’ particles in the gage length region of
an alloy 751 specimen that failed after about 3.9 x 10° cycles (36.6 hours of exposure at
870°C) at a stress level amplitude of 150 MPa. (b) Transmission Electron Microscope image
of cuboidal y* particles in the gage length region of an alloy 751 specimen that failed after
about 19 x 10° cycles (~177 hours) at 870°C and a stress amplitude of 100 MPa.

Figure 6 shows the variation in microhardness values as a function of cycles and exposure time
in alloy 751 and in Waspaloy, measured in metallographic samples obtained from the gage
length of the fatigue tested specimens. It is important to note that the initial microhardness values
and the microhardness values after identical exposure times at 870°C are greater for Waspaloy
specimens. It is also interesting to note that a significant decrease in microhardness values for
both alloys occur in the very early stages of exposure at 870°C. This can be related to the fact
that aging treatments of the alloys were performed at temperatures lower than 870°C. Since the
equilibrium volume fraction of y* decreases with an increase in temperature, the volume fraction
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of y* decreases rapidly in the early stages of exposure at 870°C along with an increase in the size
of the y’ precipitates, resulting in the decrease in the microhardness values.

(b)

Figure 5 (a). Secondary electron (SE) image showing vy’ particles in the gage length region
of an Waspaloy specimen that failed after about 2.3 x 10° cycles (22 hours of exposure at
870°C) and a stress amplitude of 275 MPa. (b) TEM of y* particles in the gage length region
of a Waspaloy specimen that failed after about 55 x 10° cycles (~512 hours) at 870°C and a
stress amplitude of 200 MPa.

Figure 7 shows the fatigue lives of alloy 751 and Waspaloy as a function of the stress obtained
using fully reversed uniaxial fatigue tests. The range of stress amplitudes selected for the study
was determined by the typical in-service stresses experienced by the component. Several
observations should be highlighted with the data presented in figure 7. First, it should be noted
that even for the lowest stresses at the temperature of interest, failure was observed within a
finite number of cycles (< 10° cycles). Furthermore, note that at all stress levels used in this

study, for a given stress amplitude, the cycles to failure of Waspaloy is greater than that of alloy
751.
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Figure 6. Effect of exposure time at 870°C during testing on the microhardness in 751 and
Waspaloy specimens.
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Figure 7. Uniaxial fatigue tests (R=-1) conducted on Waspaloy at 870°C show greater fatigue
lives compared to fatigue lives observed in alloy 751 specimens at the same levels of stress
amplitude.

Discussion

As mentioned earlier, in the high cycle fatigue regime, crack initiation, rather than crack
propagation constitutes the major component of the fatigue life. A number of microstructural
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features may act as potential sites for crack nucleation [3, 8-10]. Previous work on Ni-based
alloys show that defects such as inclusions and pores can result in the initiation of fatigue cracks
[3]. In relatively clean, wrought materials, this initiation is likely to play a smaller role. Slip
processes play an important role in the initiation of fatigue cracks. Fatigue cracks can be initiated
by the intrusion-extrusion mechanism from persistent slip bands that form due to localized slip
on the active slip planes. Most of the slip band cracks occur in surface grains that are favorably
oriented for slip with a Schmid factor of 0.5 in Ni-based alloys. It has been observed that coarse
grained materials are more prone to slip band cracks than fine-grained materials [3, 9]. In
addition, crack initiation can occur at twin and grain boundaries as a result of slip impingement.
Fatigue cracks can initiate at grain or twin boundaries where impinging slip causes plastic
incompatibility and stress concentration. For example, in Waspaloy, it has been shown that the
initiation site is located in a cluster of grains with grain misorientations less than 15° and
exhibiting similar Schmid factors [3, 10]. The “supergrain” acts as a single grain allowing easy
slip transmission across low-angle boundaries, with an effective slip distance that is larger than
the average grain size.

In a study of the very high cycle fatigue life of Nimonic 75, a solid solution strengthened alloy
and Nimonic 80A, a y’ strengthened alloy, it was observed that the Nimonic 80A showed better
fatigue life in the peak-aged condition when compared to Nimonic 75 [11]. Fatigue tests on
plastically deformed and undeformed peak-aged Nimonic 80A specimens, showed that the effect
of surface roughening due to predeformation on the high cycle fatigue life diminished at
temperatures greater than 600°C due to the rapid formation of oxide layers at the higher
temperatures [12]. It was found that independent of the pretreatment, the fatigue life obtained at
800°C was lower than that of the fatigue life from RT-600°C. This was attributed to the
formation of a thicker, brittle oxide film leading to earlier crack initiation and the loss of static
strength.

An investigation of the high cycle behavior of y’strengthened single crystal superalloy SRR99 at
temperatures of 700°C, 760°C, 850°C, and 900°C showed that the temperature dependence of the
high cycle fatigue life correlated well with the temperature dependence of the static strengths of
the alloy [13]. Our observation on the improved fatigue life of Waspaloy when compared to alloy
751 is consistent with the larger high temperature static strength of Waspaloy and the above
observations in Nimonic 80A and SRR99. It can be concluded that despite the larger grain size in
Waspaloy, the differences in localized slip activity in Waspaloy and alloy 751 specimens due to
the greater strengthening in Waspaloy dominates the high cycle fatigue life under these
experimental conditions.

Conclusions

Very high cycle fatigue lives of two nickel based alloys, alloy 751 and Waspaloy were evaluated
at 870°C and microstructural evolution that occurred during exposure to the high temperature
was followed as a function of fatigue cycles. Significant coarsening of y’ precipitate was
observed in both alloys, resulting in a loss of strength as a function of exposure at 870°C. Results
from fatigue testing show that for the conditions tested, Waspaloy shows better fatigue life than
alloy 751. These results are consistent with the larger static strength of Waspaloy at 870°C when
compared to that of alloy 751.
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