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Abstract 

 

ATI 718Plus
®

 alloy relies upon grain boundary precipitation of the delta phase in order to 

achieve good resistance to notch failure. Delta phase precipitation can occur when forging at 

subsolvus temperatures or during solution annealing.  Precipitation of delta phase during solution 

annealing can be affected by the interaction of forging temperature and strain during hot working 

whereby the combination of high forging temperature and low strain can result in unsatisfactory 

delta phase precipitation.  Additionally, delta phase precipitation can be affected by exposure to 

supersolvus temperatures after forging is complete.  This paper describes the effect of thermal 

mechanical processing history on delta phase precipitation in ATI 718Plus alloy and provides 

guidance on best practices to achieve optimum microstructure. 

 

Introduction 

 

ATI 718Plus alloy is a new, gamma-prime-strengthened, Ni-Fe base superalloy suitable for use 

up to at least 704ºC (1300ºF) [1].  The alloy has been characterized and evaluated by many 

OEM’s, both independently and as part of a Metals Affordability Initiative funded project [2, 3, 

4].  Alloy development at ATI Allvac is complete, and commercial application of the alloy began 

in earnest in 2010.  Initial applications for the alloy include static parts such as turbine engine 

rings and cases.  However, the temperature capability and manufacturability of ATI 718Plus 

alloy has also lead to the alloy being considered for disk applications. 

 

The mechanical properties of ATI 718Plus alloy are strongly linked to microstructure.  Grain 

boundary delta phase may be required to insure good notch ductility [5], and grain size and 

gamma-prime size affect strength, creep resistance, and creep crack growth rate [6].  Other 

authors [7] suggest that low angle grain boundaries provide resistance to cracking in notched 

stress rupture tests.  Therefore, control of microstructure through thermal mechanical processing 

and heat treatment is important to manufacturers of parts such as engine disks and cases.  This 

paper discusses how hot working and subsequent heat treatment impact the precipitation of delta 

phase in 718Plus alloy and provides some guidance for disk forgers and ring forgers to achieve a 

desirable microstructure. 

 

Delta phase in ATI 718Plus alloy is thought to play a role similar to that in alloy 718, namely as 

a grain boundary precipitate phase that helps provide resistance to notch failure and high 

temperature embrittlement [8, 9].  Delta phase in alloy 718 is also used during hot working to pin 
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grain boundaries and produce a finer average grain size [10].  In ATI 718Plus alloy, the delta 

solvus temperature is about 999°C (1830ºF) and the nose of the TTT curve for delta phase 

precipitation is about 927ºC (1700ºF) [11].   

 

One of two general hot working and heat treatment routes are typically used in manufacturing 

ATI 718Plus alloy rings or closed die forgings: supersolvus forging (> delta solvus) or subsolvus 

(< delta solvus) forging followed by subsolvus solution annealing with the solution annealing 

temperature chosen to optimize the delta phase distribution in the microstructure [5].  When 

forging is conducted at a temperature greater than the delta phase solvus, solution annealing is 

performed at a generally lower temperature, e.g. 954ºC (1750ºF), in order to precipitate sufficient 

delta phase in the structure.  When subsolvus forging is performed, the as-forged structure 

already contains delta phase, so a generally higher temperature solution anneal, e.g. 968ºC – 

982ºC (1775ºF – 1800ºF), is often performed to prevent excess precipitation of the delta phase. 

 

However, often there are additional processing steps that are used in fabricating a finished part 

that may subject a forging to a different thermal history, such as brazing, welding, post weld heat 

treatment, hot sizing, etc.  These processes can affect the microstructure of ATI 718Plus alloy, in 

particular, the delta phase.  Andersson [12] reported that after heating as-hot-rolled ATI 718Plus 

alloy to 1040ºC (1904ºF) for 30 minutes, delta phase failed to precipitate during a subsequent 

standard solution annealing cycle.  The author has also observed that delta phase precipitation 

can be significantly affected by the combination of hot working temperature and the amount of 

strain in the final reduction step prior to solution annealing and age hardening.  Therefore, this 

investigation was executed to investigate the effects of hot working strain, hot working 

temperature, and post hot working thermal exposure on delta phase precipitation in ATI 718Plus 

alloy. 

 

There have been several studies of delta phase precipitation in “strain-free” alloy 718 [13] and a 

generally accepted TTT diagram for precipitation in the alloy has been developed.  However, 

little research discusses the effect of forging strain on delta phase precipitation in alloy 718.  

Cold working alloy 718 leads to higher nucleation rates and lower activation energy for delta 

phase nucleation [14].  Direct comparison to ATI 718Plus alloy is difficult because some delta 

phase formation in alloy 718 occurs due to transformation of  γ″ phase into the delta phase.  In 

ATI 718Plus alloy, little γ″ phase exists in the microstructure [15] and it is unlikely that it plays 

an important role in delta phase precipitation. 

 

Experimental Procedure 

 

Commercially-produced, 229 mm (9 in.) diameter, ATI 718Plus alloy billet from triple-melt 

(VIM/ESR/VAR) heat X27F-3 (composition listed in Table I) served as the starting stock for the 

forging and heat treatment experiments. Blocks measuring 51mm × 51mm × 76mm (2 in. × 2 in. 

× 2 in.) were cut from the midradius location in the billet.  Similarly, plates measuring 51mm × 

19 mm × 102 mm (2 in. × 0.75 in. × 4 in.) were also cut from the midradius location.  In both 

cases, the long axis of the blocks and the plates was parallel to the longitudinal direction in the 

billet. The blocks were subsequently forged into pancakes and the plates were hot rolled. 

 

Table I.  Chemical Composition of ATI 718Plus
®

 Alloy Used in the Present Investigation (wt.%) 

 
Heat Ni Co Cr Fe Ti Al Nb Mo W C P B 

X27F-3 Bal. 9.0 17.8 9.5 0.75 1.53 5.5 2.7 1.0 0.023 0.008 0.004 
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The blocks were upset forged into pancakes of 25% or 50% of their original height in one step.  

The plates were hot rolled for a total reduction of 11% and 17%, respectively, in multiple rolling 

passes with reheats between rolling passes.  The plates reduced a total of 11% had 4 rolling 

passes and an average final reduction pass of 5%; the plates reduced a total of 17% had 5 rolling 

passes and an average final reduction pass of 5%. Individual blocks and plates were hot worked 

at five temperatures: 954ºC (1750ºC), 1010ºC (1850ºF), 1038ºC (1900ºF), 1066ºC (1950ºF), and 

1093ºC (2000ºF).  Each block or plate was held in a furnace at the forging temperature for 1 h 

prior to hot working.  Each forging was water quenched after hot working.  The hot rolled 

samples are thought to have cooled substantially during rolling due to the large surface contact 

area with the tooling and those samples experienced little adiabatic heating due to the small 

reductions in each rolling pass. 

 

From each pancake forging, several metallographic specimens were extracted from the mid-

height, midradius location in the pancake.  From the hot rolled plates, metallographic specimens 

were extracted in the transverse direction at the quarter width position in the plate.  

Metallographic specimens measured 13 mm × 13 mm × 6 mm (0.5 in. × 0.5 in. × 0.25 in.). 

 

 

Table II.  Summary of Hot Working and Heat Treatment Procedures 

 

Plate Rolling

50% Total Reduction 

954ºC (1750ºF)

50% Total Reduction 

1010ºC (1850ºF)

50% Total Reduction 

1038ºC (1900ºF)

50% Total Reduction 
1066ºC (1950ºF)

50% Total Reduction 

1093ºC (2000ºF)

25% Total Reduction 

954ºC (1750ºF)

25% Total Reduction 

1010ºC (1850ºF)

25% Total Reduction 

1038ºC (1900ºF)

25% Total Reduction 
1066ºC (1950ºF)

25% Total Reduction 

1093ºC (2000ºF)

17% Total Reduction 

954ºC (1750ºF)

17% Total Reduction 

1010ºC (1850ºF)

17% Total Reduction 

1038ºC (1900ºF)

17% Total Reduction 
1066ºC (1950ºF)

17% Total Reduction 

1093ºC (2000ºF)

11% Total Reduction 

954ºC (1750ºF)

11% Total Reduction 

1010ºC (1850ºF)

11% Total Reduction 

1038ºC (1900ºF)

11% Total Reduction 
1066ºC (1950ºF)

11% Total Reduction 

1093ºC (2000ºF)
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Solution Annealed

954ºC (1750ºF)/60 min

Intermediate Anneal at 

1052ºC (1925ºF)/60 min 
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954ºC (1750ºF)/60 min
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954ºC (1750ºF)/60 min
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Individual metallographic samples from each forging were then heat treated using one of three  

heat treatment schedules: 1) Solution annealed at 954ºC (1750ºF) for 60 minutes, 2) Heated to 

1024ºC (1875ºF) for 10 minutes – water quenched - solution annealed at 954ºC (1750ºF) for 60 

minutes, 3) Heated to 1052ºC (1925ºF) for 1 hour – water quenched - solution annealed at 954ºC 

(1750ºF) for 60 minutes.  The as-forged condition was also examined.  Optical and SEM 

microscopy samples were prepared using routine metallographic techniques and samples were 

etched using modified Kalling’s reagent. 

 

The amount of delta in each sample was measured using image analysis techniques and ImageJ 

software [16].  The grayscale optical micrographs were converted to binary images after 

manually adjusting the threshold.  Then, when possible, grain boundaries were eliminated from 

the binary image to leave mostly delta phase.  The volume percent delta phase reported 

corresponds to the area fraction of black pixels in the binary diagram.  The fraction delta phase is 

generally overestimated because of the metallographic preparation method; however, the relative 

trends should provide information on how the amount of delta phase varies with processing. 

 

Results 

 

The as-forged grain size was consistent with the hot working temperature and strain.  Grain size 

decreased with decreasing forging temperature and increasing strain (Figure 1).  The as-hot 

rolled samples were unrecrystallized regardless of forging temperature.  The 50% reduction 

pancake forgings and the 25% reduction pancake forgings were only partially recrystallized 

when forging was completed at 954ºC (1750ºF), 1010ºC (1850ºF), and 1066ºC (1900ºF). 

 

Forgings made at 954ºC (1750ºF) contained some delta phase for all forging reductions (Figure 

2).  The amount of delta in the as-forged samples decreased with increasing forging reduction 

(Figure 3).  At 1010°C (1850°F), only the hot rolled samples contained delta phase.  At hot 

working temperatures greater than 1010°C (1850°F) no delta phase was observed in the as-

forged structures. 

 

The 1 h solution anneal at 954°C (1750°F) was effective at precipitating the delta phase in all 

samples  regardless of the  amount of hot working  strain or hot  working  temperature (Figure 4).   

 

However, the amount of delta phase that precipitated and the distribution of delta phase were 

strongly influenced by hot working parameters.  The amount of delta phase in the microstructure 

increased with increasing hot working strain and decreasing hot working temperature (Figure 5).   

 

Delta phase precipitation during solution annealing occurred primarily on grain boundaries.  

Intragranular delta phase was observed in the hot rolled samples rolled at 954°C (1750°F), 

probably due to the lower hot working temperatures.  On samples from forgings hot worked at a 

temperature that exceeded the delta phase solvus, grain boundary delta phase precipitation 

occurred only on a fraction of the grain boundaries in the microstructure (Figure 6). 

 

Delta phase precipitation during solution annealing was strongly affected by a supersolvus heat 

treatment between hot working and solution annealing. Heating the samples to 1024ºC (1875ºF) 

for 10 minutes or to 1052ºC (1925ºF) for 1 hour prior to solution annealing prevented delta phase 

precipitation during the solution anneal cycle for all samples forged at a temperature of 1038 ºC 
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Figure 1. Representative optical micrographs from as-hot worked forgings as a function of 

forging temperature and hot working strain.   

 

 

 (1900 ºF) and greater.  A small amount of delta phase was present after solution annealing in hot 

rolled samples subjected to the 1024ºC (1875ºF) for 10 minutes intermediate anneal (Figure 7).  

The delta phase in those samples was primarily intragranular delta or delta phase that appeared to 

be associated with prior austenite grain boundaries rather than grain boundary delta. 

 

Discussion 

 

As-Solution-Annealed Condition 

These results show that forging strain and forging temperature have an affect on delta phase 

precipitation during subsequent solution annealing.  Lower forging temperature and higher strain 

promote delta phase precipitation during solution annealing.  The forging strain effect is evident 

even with supersolvus forging temperatures where the as-forged microstructure contains little to 

no delta phase. 
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Figure 2. Representative optical micrographs from as-hot worked forgings as a function of 

forging temperature and hot working strain showing delta phase in the as-hot-worked 

microstructure. 
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Figure 3.  Volume percent of delta phase in as-forged material as a function of forging 

temperature and total hot working reduction. 
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Figure 4. Representative optical micrographs from as-solution-annealed forgings – 954ºC/1h 

(1750ºF/1h) – as a function of forging temperature and hot working strain showing delta phase in 

the microstructure. 
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Figure 5.  Volume percent of delta phase in as-forged material as a function of forging 

temperature and total hot working reduction. 

 

 

 

  
 

Figure 6.  Delta phase precipitation in as-solution annealed microstructures. A) Intragranular 

delta phase precipitation in a sample hot rolled a total reduction of 17% at 954ºC (1750ºF).       

B) Selective grain boundary precipitation of delta phase in a sample hot worked 17% total 

reduction at 1066ºF (1950ºF). 
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Figure 7.  Representative optical micrographs showing the effect of an intermediate anneal on 

the microstructure of as-solution annealed samples as a function of hot working strain and 

temperature.  
 

Another result is that the fraction of grain boundaries where delta phase nucleates increases as 

the forging strain increases at a given forging temperature.  At small forging strains and higher 

forging temperatures, some grain boundaries exist where delta phase precipitation is more 

favorable, resulting in a non-uniform delta phase distribution. 
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It is likely that austenite grain boundary defect structure is important in delta phase precipitation 

such that only the highest energy grain boundaries support nucleation of delta phase.  Stotter et al 

[17] report similar observations of selective grain boundary precipitation of delta phase in 

supersolvus forged and solution annealed ATI 718Plus alloy.  Those researchers report that the 

preferred grain boundaries are high angle grain boundaries; however, the grain boundary 

misorientation of the preferred nucleation sites was not reported. 

 

Classical heterogeneous nucleation theory [18] describes the nucleation rate as being affected by 

the competition between the driving force for nucleation – the volumetric decrease in free energy 

associated with the formation of a volume of a second phase – and the retarding forces – the 

interfacial energy and the strain energy associated with the formation of the second phase.  For 

grain boundary nucleation, the retarding force due to interfacial energy decreases as the energy 

of the parent phase grain boundary increases, provided that the nature of the parent phase grain 

boundary on the interfacial energy between new phase and the parent phase is negligible.  In the 

case of 718Plus alloy, the formation of delta phase on high angle (high energy) grain boundaries 

is associated with a smaller barrier to nucleation and should result in a higher nucleation rate.  

Increasing grain boundary defect structure due to residual dislocations created during hot 

working would be expected to increase the interfacial energy of the austenite grain boundaries, 

even low angle grain boundaries, thus decreasing the barrier to nucleation.  Therefore, with no 

change in driving force for nucleation, the nucleation rate for delta phase on all grain boundaries 

should increase as strain and grain boundary defect structure increases. 

 

Desalos et al [19] observed a similar effect as that seen in ATI 718Plus alloy when studying the 

precipitation of ferrite from the parent austenite phase in low alloy steels.  They report a 

significant increase in grain boundary nucleation rate with increasing hot working strain. 

 

As forging temperature increases, one would expect a lower residual dislocation density 

associated with hot working and thus fewer defects associated with grain boundaries in the 

austenite.  Fewer dislocations will reduce the energy of the grain boundaries and thus increase 

the barrier to delta phase nucleation.  Hence, less delta phase is observed in as-solution annealed 

forgings hot worked at higher temperatures.   

 

Unocic et al [7] report that grain boundary defect structure in addition to amount of delta phase 

impacts notch sensitivity in ATI 718Plus alloy and Dempster et al [20] reported a higher 

frequency of notch failures when forging at higher temperatures where fewer grain boundary 

defects would be expected. 

 

Intermediate-Annealed and Solution-Annealed Condition 

A short supersolvus heat treatment (1024ºC (1875ºF) for 10 minutes) after hot working and prior 

to solution annealing prevented delta phase precipitation during a standard solution anneal cycle 

for most combinations of hot working temperature and reduction.  Some small, nodular delta 

phase precipitates were observed in those samples hot worked at 954ºC (1750ºF).  It is not clear 

if these delta phase particles precipitated during solution annealing or were present after forging 

at the subsolvus temperature and did not completely dissolve during the short intermediate 

anneal.  

 

After a longer, higher temperature (1052ºC (1925ºF) for 1 hour) intermediate anneal and 

standard solution anneal, no delta phase was observed in the microstructure regardless of the 
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starting condition, i.e. hot working temperature or reduction.  The unrecrystallized forgings 

recystallized and grain growth occurred on all samples.     

 

The absence of grain boundary delta phase after  the combination of an intermediate anneal and 

solution anneal cycle further suggests that the grain boundary defect structure is of significant 

importance in delta phase precipitation in ATI 718Plus alloy.  The intermediate anneal cycle 

temperatures were high enough for dislocation movement and annihilation at grain boundaries, 

thus resulting in lower energy grain boundaries. 

 

The results which included an the intermediate anneal prior to solution annealing and those from 

a more conventional processing route without the intermediate anneal, indicate that there is not a 

strong driving force for delta phase nucleation at 954ºC (1750ºF) and that only with the presence 

of significant strain energy in the austenite, or defect structure in the austenite grain boundaries, 

can significant delta phase nucleation occur during a typical solution annealing time frame.  

 

Significance of Results 

These results can be important during closed die forging.  In the case of supersolvus forging, 

areas in the part that see little deformation strain may be subject to insufficient delta phase 

nucleation during solution anneal treatment.  Also, areas that experience significant adiabatic 

heating during forging may have a less than optimal delta phase structure in the final part.   

 

In ring rolling, final sizing (small deformation after the part has been rolled to its final shape) 

should be performed below the delta phase solvus.  Heating the ring above the solvus while only 

imparting small amounts of strain can lead to poor delta phase precipitation during solution 

annealing. 

 

Heating for brazing (an intermediate heat treatment) may prevent delta phase precipitation during 

subsequent solution annealing.  Similarly, the heat affected zone around a weld may be heated 

sufficiently such that delta phase precipitation is affected.  Appropriate steps should be taken to 

insure proper microstructure after such processing. 

 

Future Work 

This investigation has shown that forging temperature and strain and material condition at the 

start of solution annealing heat treatment play an important role in delta phase precipitation in 

ATI 718Plus alloy.  However, to date, the effects have been assessed only qualitatively.  Future 

studies investigating which high angle grain boundaries support delta phase precipitation should 

be performed.  The defect structure at grain boundaries as a function of forging parameters and 

heat treatment should be investigated using TEM.  Better quantitative measurements of the 

amount of delta as a function of annealing time and temperature should be performed and the 

effective of strain on activation energy for nucleation should be determined. 

 

Conclusion 

 

Residual hot working strain and grain boundary defects play an important role in delta phase 

precipitation during solution annealing of ATI 718Plus alloy.  Grain boundary delta phase 

precipitation is promoted by greater amounts of residual strain in the austenite.  Higher forging 

reductions or forging at lower temperatures promote delta phase precipitation during solution 

annealing.   
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Because grain boundary delta phase precipitation response can be poor when a forging is 

performed at a temperature well above the delta solvus, hot working metal temperatures for 

closed die forgings should not be in excess of about 1052ºC (1925ºF) in order to have good delta 

phase precipitation during solution annealing.  Lower temperatures are required as forging strain 

decreases.  In order for delta phase to precipitate easily, the final hot working step should be 

below the delta solvus temperature unless significant hot working strains are performed.  Small 

strains, such as those associated with sizing of a rolled ring, may be insufficient to promote delta 

phase precipitation during solution annealing. 
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