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Abstract  
The basic intent of this paper is to examine the role of the minor elements B and Zr within typical 
specification limits for alloy 718 with respect to (i) microstructure evolution, (ii) strengthening 
effects and (iii) thermal stability. For this purpose, thermodynamic calculations using the 
software THERMOCALC were performed, varying the content of B and Zr. In addition, alloys 
with precisely controlled chemical composition (with content variations of 20 to 100ppm B 
and/or of 50 to 200ppm Zr) were prepared by drop casting in a vacuum arc furnace and hot 
forged, so that it was possible to compare the theoretical predictions with experimental results. 
The microstructure evolution was studied in detail by means of scanning electron microscopy 
(SEM) and x-ray diffraction. Furthermore, mechanical properties including tensile and creep 
behaviour were examined. Based on these results, dependencies between chemical composition, 
microstructure and mechanical properties will be elucidated. 
  

Introduction 
 

The strength of Fe-Ni-based superalloys is dependent on several factors, such as solid 
solution strengthening, volume fraction and size of the precipitaties. Since these factors are 
controlled by the composition of each phase, numerous studies have been carried out on the 
partitioning behavior of alloying elements between the �, �´ and �´´ phases [1]. 

The influence of minor elements, especially B, on the mechanical properties of Alloy 718 
and its derivatives was studied in many works in the last years [2-7, 12]. It was realized that small 
additions of B and Zr were extremely beneficial to the creep-rupture properties of nickel-base 
superalloys. In the late 1950s, it was reported that B (up to 0.01 pct) and Zr (up to 0.1 pct) 
improved high-temperature strength, ductility, and notch sensitivity of several alloys. In the study 
of Floreen and Davidson the influence of B and Zr on the creep and fatigue crack growth 
behavior of Ni-base superalloys was shown. They realized that additions of B and Zr markedly 
improved the smooth specimen creep properties and the threshold stress intensity values for creep 
crack growth [8]. 

In another study it was shown that B and C strongly influenced the formation of grain 
boundary precipitates, and B causes the formation of an intergranular M3B2 boride. Both, B and 
Zr, were observed to be critical for improvement of the mechanical properties of the superalloys 
[9]. Recently, Cao and Kennedy have proposed to add B and P and showed that B and P 
increased the resistance to creep deformation [10]. The effect on creep strength of Alloy 718 due 
to addition of both elements was more visible than the effect due to their separate addition. 
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B and Zr positively affect the creep properties of complex nickel-base heat-resistant alloys. 
Their addition decreases the tendency to microcracking allowing longer creep exposure and 
higher creep deformations [11].  

However, it has not been investigated in many studies how the addition of B and Zr 
influences the microstructure of Alloy 718 (grain coarsening and morphology of �-Ni3Nb phase). 
This paper seeks to define the role of B and Zr in forming the microstructure of Alloy 718 with 
the aim to improve its microstructural stability and strength. 
 

Experimental Procedures 
 

The alloys studied in this paper were made by induction melting under an Ar atmosphere 
(alloy 1) and by plasma arc melting, followed by casting the material into a water-cooled copper 
crucible (alloys 2-6). Their nominal chemical compositions are given in Table I. The Nb 
concentration of alloy 1 was taken in the limits of the ASTM specification and SAE AMS for 
Alloy 718. The B concentration is limited to 60 ppm. The Zr concentration is not indicated. The 
alloy 1 was melted without additions of B or Zr in order to take its microstructure as the 
reference. All alloys were homogenized at 1140 °C/6 h + 1175 °C/20 h in vacuum. 

The alloys 2-6 with additions of B and Zr were deformed from 13 mm to 9 mm by rotary 
swaging at 1075 °C. The resulting rods were solution annealed at 980 °C/ 1.5 h, followed by 
water cooling to room temperature (RT). The material was then double aged at 721 °C/ 8 h + 
furnace cooled at 50 °C/h + 620 °C/8 h air cooled to RT. 

In order to predict the phases in the alloys, ThermoCalc software version S and the 
commercial TTNi7 database were used to calculate the phases and their precipitation 
temperatures. The phases considered in the calculation were face centered cubic �, L12-ordered 
�´, DO22-ordered �´´, �, Laves, MC, M6C, M3B2, MB2 and liquid. It was necessary to suppress the 
orthorhombic Ni3Nb � phase from the calculations due to its interference with the �´´ phase and 
vice versa. 

 Table I. Nominal chemical compositions of alloys 
 

Alloy C Ni Cr Fe Mo Nb Ti Al B Zr 
ASTM 
Spec. 

Max 
0.08 

50-55 17-21 balance 
2.80-
3.30 

4.75-
5.50 

0.65-
1.15 

0.20-
0.80 

Max 
60ppm 

- 

Alloy 1 0.025 balance 18.7 17 2.96 5.37 0.96 0.48 - - 

Alloy 2 0.025 balance 18.7 17 2.96 5.4 0.96 0.48 60ppm - 

Alloy 3 0.025 balance 18.7 17 2.96 5.38 0.96 0.48 150ppm - 

Alloy 4 0.025 balance 18.7 17 2.96 5.41 0.96 0.48 200ppm - 

Alloy 5 0.025 balance 18.7 17 2.96 5.39 0.96 0.48 60ppm 200ppm 
Alloy 6 0.025 balance 18.7 17 2.96 5.37 0.96 0.48 100ppm 200ppm 

 
The first microstructure preparation was made using Murakami etching reagent in order to 

evaluate the amount and the morphology of carbides, carbo-nitrides and borides. The Murakami 
etching reagent etches selectively the precipitates of carbides, carbo-nitrides and borides and does 
not affect the matrix. The chemical composition of Murakami etching reagent is 100 ml H2O, 10 
g KOH (or NaOH) and 10 g K3[Fe(CN6)]. 

The V2A etching reagent was used during the second microstructure preparation. It was 
possible to identify the morphology of �´, �´´, �, �, Laves and carbides because the matrix was 
selectively etched in contrast to the precipitates named above. With help of this etching reagent, 
the grain boundaries and respectively grain sizes could also be identified. The chemical 
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composition of the V2A etching reagent is 200 ml H2O, 200 ml HCl, 20 ml HNO3 and 0,6 ml 
“Vogels Sparbeize”. 

SEM was used to observe the morphology and the distribution of all the phases. The 
chemical composition of the precipitates was identified by means of EDX. 
 

Experimental Results 
 

The thermodynamic prediction of the phase’s solvus temperature in case of the solid phases 
and the solidus temperature in case of the liquid phase for alloy 1 with addition of boron is shown 
in Fig.1.  

 
Fig.1. ThermoCalc calculations for alloy 1 with B addition up to 200 ppm 

  
The boron concentration was varied up to 200ppm. The Ni concentration was balanced; the 

other elements stayed constant. An increase of boron amount to approximately 40ppm raises the 
solvus temperature and stability of the M3B2 phase. Further additions of boron did not influence 
the solvus temperature of M3B2 phase. The phase MB2 precipitates at boron concentrations above 
about 65ppm. The solvus temperature of this phase remains constant according to the 
calculations. The volume fractions of both phases are very small because of the low boron 
content.  

The same thermodynamical calculations were made for alloy 1 with additions of Zr. The 
calculation showed that Zr additions up to 200ppm did not have any effect. 

Grain boundary precipitation of �-Ni3Nb (in short rods and globular morphology) and grain 
boundary precipitation of carbides are typical for the microstructure of Alloy 718 (see Fig. 2). 
The main fine precipitations of disk-like �´´ and precipitations of fine globular �´ can not usually 
be detected in the SEM.  

Carbides and carbo-nitrides (dark angular precipitates) in Fig. 2a and 2b are much coarser 
than the plate like �–Ni3Nb phase precipitates at the grain boundaries (Fig. 2b and 2c.). With help 
of energy-dispersive spectroscopy (EDS), the carbo-nitrides (Fig. 2a) could be identified (Fig. 3).   
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(a)     (b) 

 
    (c) 

Fig.2. Microstructures of alloy 1 (V2A etching reagent), showing large carbides and carbo-
nitrides (a, b) and �–Ni3Nb phase at grain boundaries (a-c) 

 

 
Element   Atom % 

C        7.07 
N        26.77 
Ti       55.11 
Nb       11.05 

 
Fig.3. EDS spectrum of carbo-nitride (dark angular precipitate in Fig. 2a) 
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Investigation of alloys 2-6 demonstrated that boron has a large influence on castability. All 
solidification rods of alloys 3 and 4 with 150ppm B and 200ppm B respectively showed cracks in 
their middle part after melting and casting into a water-cooled copper mould (Fig. 4a) and could 
not be deformed. Obviously, these alloys are sensitive to hot cracking due to high concentration 
of B (Fig. 4b). The fracture morphology is shown in Fig. 4 (b-d) at higher magnification. It is 
typical far hot tearing, often exposing dendrite arms.  

 

  
(a) (b) 

  
(c)     (d) 

Fig.4. Cracked rod of alloy 4 (a) and corresponding SEM micrographs close to the central cavity 
(b, c) and to the specimen surface (d) 

  
The microstructure of alloy 2 (60ppm B), alloy 5 (60ppm B, 200ppm Zr) and alloy 6 

(100ppm B, 200ppm Zr) is shown in Fig. 5. The SEM micrographs show clearly that the volume 
fraction of etched precipitates increases from alloy 2 (Fig. 5 a-b) to alloy 5 (Fig. 5 b-c) and 6 (Fig. 
5 d-e). As a boride creator, zirconium increases the amount of (Nb,Ti,Zr)xBy borides (Fig. 5 b-c). 
EDS analysis of alloy 5 verifies this conclusion (Fig. 6). Zirconium in Alloy 718 has also a big 
influence on precipitates at grain boundaries. Fig. 5 e-f demonstrates that a large area along grain 
boundaries was selectively etched, which can be attributed to the �-Ni3Nb phase.  
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(a)     (b) 

 

  
(c)     (d) 

  
(e)     (f) 

Fig.5. Microstructures of alloy 2 (60ppm B) (a-b), alloy 5 (60ppm B and 200ppm Zr)(c-d) and 
alloy 6 (100ppm B and 200ppm Zr) (e-f) 

 
For further phase analysis the samples were also etched with V2A etchant, revealing the �-Ni3Nb 
phase as well as carbides, boride and carbo-nitride. In case of alloy 2 (60ppm B, no Zr) the 
morphology of the precipitates is as exerted for Alloy 718 (Fig. 7a, b). Thus, the effect of small 
boron additions on the microstructure is limited to the formation of isolated borides as discussed 
above. However, when zirconium is added the result is vastly different. Alloys 5 and 6, 
containing 200ppm zirconium at essentially unaltered boron content, exhibit agglomerates of the 
�-Ni3Nb phase and its volume fraction increases significantly (Fig. 7c-e). EDS analysis (Fig. 8) 
confirms the critical role of zirconium, which strongly partitions to the �-Ni3Nb phase. 
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Fig.6. Microstructure of alloy 5 with corresponding EDS maps for niobium, titanium, zirconium 
and boron 

  

  
(a)     (b) 

  
(c)     (d) 
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(e)     (f) 

Fig.7. Microstructure of alloy 2 (a-b), alloy 5 (c-d) and alloy 6 (f-e) 
 
 

  
 

Fig.8. Microstructure of alloy 5 with corresponding EDS maps for niobium and zirconium 
 

Summary 
 
The results of this work show that even small changes in the concentration of the elements 

B and Zr in the Alloy 718 have large influence on its microstructure: 
• Boron addition leads to the formation of borides in the microstructure while the 

morphology of all other phases remains unchanged.  
• Boron concentrations beyond about 100ppm strongly increase the tendency to hot 

cracking of alloy 718 and therefore not advisable. 
• The addition of zirconium strongly changes the morphology and volume fraction of 

borides and �-Ni3Nb phase, leading to large agglomerates, which are expected to 
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adversely affect mechanical properties. Hence, the zirconium content should be kept 
below 200ppm. 
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