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 Abstract 
 
Spray Forming is a technology to produce near net shape components and preforms. A 
simulation tool for the temperature distribution which incorporates all necessary sub steps (metal 
deposition on the substrate, heat transfer across the surface by convection and radiation) is 
developed to calculate residual stresses during the different process steps. The resulting 
temperature distribution was used to calculate the stresses during all process stages. Thermal 
histories of temperatures at certain positions will be shown. The dependency of the residual 
stress on the thermal history of the material was examined. Mainly at the interface 
substrate/deposit, a region with elevated porosity was observed. Porosity measurements will be 
presented.  
 

Introduction 
 
Spray forming combines two distinct processes. In the first step, liquid metal is atomized into a 
spray cone of droplets. The impinging droplets form a near net shape product on a substrate in 
the second step. In contrast to spray formed billets, (in which the surface temperature is mostly 
constant) the substrate surface temperature just ahead of the spray cone is a strong function of 
time. Therefore, the obtained material density or the porosity is a function of the surface 
temperature. Porosity measurements of super alloy rings were reported in [1]. The results show 
that at temperatures above 1100°C, low porosity is measured. High convection coefficients in the 
vicinity of the spray cone cause a temperature increase for initially cold substrates and a 
temperature drop for initially hot substrates. Mathematical models for the temperature 
distributions in the spray formed tubes were created [2, 3, 4, 5, 6]. A detailed analysis of heat 
exchange phenomena on small time scales is given by [3]. The temperature distribution in 
substrate and deposit act as a load for the developing residual stresses. Due to the difficulties in 
simulating stresses in spray formed deposits, only a few papers have been presented [7, 8, 9]. 
Mechanical properties for IN718 are reported for temperatures up to 1100°C [10]. The 
uncertainties in the mechanical properties cover a small temperature range, from 150K to the 
solidus temperature of the material. The resulting stresses are mainly affected by thermal strains. 
Specifically, they depend on the heating and cooling rates during the spray process, and later on 
post spray conditions. Therefore, the knowledge of the temperature distribution during the spray 
forming process, as well as the behavior of temperature during heat treatment and cooling 
processes is of great importance in the understanding of the development of residual stresses. 
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Simulations 
 
The mathematical model has to be able to describe the growth process of impinging semisolid 
metal particles on a (preheated) rotating substrate tube which passes through a spray cone. Table 
I summarizes the overall geometrical data. The heater was designed for both preheating purposes 
as well as for heat treatment reasons. The model consists of three parts. In part 1, the geometrical 
modeling of substrate and deposit is conducted. Part 2 is responsible for calculating the 
temperature distribution during decomposition, heat treatment and cooling. In part 3, the 
resulting stresses caused by temperature loading are calculated. 
 

Table I. Overall Geometry used in the Simulations. 
inner substrate radius 45mm  substrate length 500mm 
outer substrate radius 50mm  deposit length 400mm 
deposit thickness 19mm  heater length 500mm 

 
 
Geometry Model 
The growth of the deposit for a fixed distance between the atomizer nozzle and the deposition 
plane is described by the radial distribution of the mass flux density ( )m . This is provided by 
[11].  
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Where om is the mass flux density at the spray cone axis, 5or is the half value radius, and a is an 
exponent whose value is set to 1.4. The total mass flow is obtained by integrating equation 1 
with respect to the radius. For numerical reasons, the integration is limited to a maximum radius 

max 53 or r≈  (spray cone boundary). 
 

Spray Cone Boundary

 
Figure 1. Schematic mass / energy distribution in the spray cone. 
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Figure 1 demonstrates the integration process employed for a liquid fraction distribution. The 
,y z − plane is perpendicular to the spray cone axis and is at a certain distance away from the 

atomizer nozzle. Beyond the spray cone boundary, the mass flow is set to zero. The impinging 
mass flow *( ( , ))m y z , shaped in a rectangle of size ,y zΔ Δ , is given by equation 2. A sticking 
efficiency ( effs ) takes into account the overspray and the (numerical) loss of mass flow due to the 
integration algorithm [3]. The integration for a constant z − position results in a distribution used 
in the 2D – axisymmetric model.  
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Temperature Calculations 
For an axisymmetric model in cylindrical coordinates, the partial differential equation for the 
temperature field due to conduction is given by equation 3. The equation also includes the 
presence of a heat sources q [12]. 
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Where ρ is the density, c is the specific heat capacity, and k is the thermal conductivity. The 
necessary thermal material properties were taken from [13]. 
 
Initial and Boundary Conditions 
The enthalpy flow ( ( , ))H y z associated with the metal mass flow for a quadratic distribution of 
the specific enthalpy ( , )h y z with respect to the coordinates ,y z is given by: 
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The maximum value for the specific enthalpy maxh at the spray cone axis is adjusted to maintain 
an overall liquid fraction of 30%. This is done under the assumption that the specific enthalpy for 

maxr equals the specific enthalpy at solidus temperature ( )sol solh h T= at the spray cone boundary. 
The liquid fraction distribution in the spray cone is shown in Figure 1. To calculate the initial 
temperature of a new deposit layer, a linear function of the specific enthalpy with respect to the 
temperature between solidus and liquidus temperature is assumed. The initial temperature of the 
substrate is either room temperature or the substrate is heated up to 1100°C.  
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At the inner radius of the substrate, adiabatic conditions were assumed. Convection ( )conQ and 
radiation ( )radQ were applied as boundary conditions over the remaining surface: 
 
 ( ) ( )4 4  and  con dep surf amb rad dep surf ambQ A h T T Q A T Tσε= − = −  (6) 

Where depA is the surface area of the deposit (including the outer surface of the unsprayed 
substrate), ,surf ambT T are the surface and ambient temperatures,σ is the Stephan-Boltzmann 
constant, and ε is the emissivity. For the heat transfer coefficient h , a symmetric function of the 
distance from the spray cone axis was chosen. The substrate and deposit pass through the heat 
transfer coefficient distribution, and experience different heat transfer coefficients at different 
time steps. The emissivity ε was set to 0.5. 
 

'Old' Deposit

Substrate Tube

Mass- / Enthalpy Distribution

'New' Deposit Layer

Spray Cone

Substrate Movement

 

Figure 2. Spray process. 

 
Figure 2 is an illustration of the spray process. In the upper right corner, a 3D animation of the 
process can be seen. The red marked area is part of the 2d – axisymmetric model. During the 
integration time (approx. 1s), mass and enthalpy were collected from the spray cone. In the new 
time step, mass and enthalpy were added to the finite element model, with the green bars denoted 
as the ‘new’ deposit layer. The initial temperature (corresponding to the specific enthalpy) was 
applied to the new layer and the boundary conditions were updated for the entire model. Using 
the updated boundary conditions, the temperature field was calculated according to equation 3. 
During the active time step, material was collected from the spray cone (yellowish brown bars) 
to be added to the model in the next time step. 
 

Heat Treatment / Cooling Conditions 
An inductive heater was used for preheating the substrate and/or applying a heat treatment 
process to the sprayed tube. After the spray process, the deposit was moved back to the heater. In 
Figure 3, a piece of a cross section of substrate/deposit, heater insulation and induction coil is 
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shown. The boundary conditions cause a thermal gradient at the deposit surface that is equal to 
the heat flow due to convection and radiation over the surface. The heat flow was collected at the 
surface of the inductor insulation and was transferred by conduction to the inductor coils. These 
were cooled to a certain temperature. For the heat treatment process, the power to the inductive 
heater was adjusted to reach the desired annealing temperature (e.g. 1000°C or 1200°C). In this 
case, equation 3 was solved by taking a heat source into account. The heat source q  decayed 
exponentially, due to the characteristic of an inductive heater. Equilibrium was reached when the 
heat losses due to convection and radiation equaled the energy input to the heater.  
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Figure 3. Schematic view of the temperature and heat source distribution of a piece of a cross 

section of substrate and deposit. 
 
 

Table II. Applied Boundary Conditions. 
Heat Transfer Coefficient 

W/(m²K) 
Ambient Temperature  

°C Radiation Item 
Spray forming process 

Forced Convection 
650 to 200  

(function of the tubular 
coordinate) 

400 to 200 
(function of the tubular 

coordinate) 
yes 

 Cooling Condition 
Natural Convection 50 50 yes 

Forced Convection 
650 to 200  

(function of the tubular 
coordinate) 

50 yes 

Predefined Cooling Rate 
and Heat Treatment 

50 inductor temperature yes 

 
The initial time step in the simulation (heating or cooling) was estimated so that the overall 
increase or decrease of deposit and substrate temperature was 1K. After achieving the desired 
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temperature, the heater power was reduced to a new equilibrium value. In the simulation, the 
temperature steps were 200K each (Figure 6). One simulation was performed by applying a 
predefined cooling rate of 0.02K/s (72K/h) (c.f. Figure 7).  
 
In the heat treatment case, the boundary conditions for convection and radiation were changed. 
The ambient temperature became the transient temperature indT at the inner surface of the heater. 
The equation for the radiation heat exchange took into account the geometry from the deposit 
and heater [14].  
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Stress Calculations 
The mechanical properties were taken from [10]. Parameters for a tri-linear kinematic hardening 
model were extracted from the data and applied as a material model. The linear elastic behavior 
was valid to up to 90% of the yield stress for the corresponding temperature. The second point 
was the yield stress, which correlated to the elastic strain plus 0.2% plastic strain.  Finally, the 
third point was given by the tensile strength and a total strain of 15%. Poisson's ratio and the 
Young's modulus were temperature dependant. The coefficient of thermal expansion was 
assumed to be constant. Figure 4 shows the used stress - strain relations. Solid lines are based on 
[10], and the dashed lines are estimated for temperatures above 1093°C. The calculated 
temperature fields were applied as loads to the mechanical model at every time step.  
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Figure 4. Stress / strain curves used in the simulations. 

 
 

Experimental set-up 
 
For the production of spray formed materials on a technological scale, a spray forming plant with 
a capacity of 20 L of liquid material was used. The experimental set-up is shown schematically 
in Figure 5. Inductive melting under inert atmosphere of argon at ambient pressure was used to 
avoid the oxidation of the molten metal. The pouring system supplied a tundish with a constant 
melt flow of 970 kg h-1. A scanning free-fall atomizer was used for the atomization of the melt, 
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which flowed through a 5.5 mm diameter outlet at the bottom of the tundish. Nitrogen and argon 
with gas flows of about 1010 kg h-1 were used for the atomization. The alloy was superheated to 
150 ± 10K above the liquidus temperature and was held there for 30 minutes to achieve 
homogenization. Afterwards, the melt was poured into the pre-heated tundish. The melt and 
tundish temperatures were kept the same to avoid premature freezing of the melt. Located 
400mm below the atomizer is the substrate tube. The diameters and length of the substrate were 
88 and 102 x 500 mm, and the wall thickness was 5mm. The substrates were preheated using an 
inductive heater (150 kW) capable of temperatures up to 1200°C.  
 

Spray cone

Crucible
Tundish
Free fall atomizer

Deposit

Substrate tube

Inductive Substrate Heater

Thermocouple 3
Thermocouple 2
Thermocouple 1

Spray cone

Pyrometer 1
Pyrometer 2

Camera 1

Camera 2

Crucible
Tundish
Free fall atomizer

Deposit
Substrate tube

Exhaust Gas 
and Overspray

Thermocouple TE 1-3

 

Figure 5. Schematic of the process and measuring devices. 

 
The experiment was observed via two cameras which monitored the deposition process and the 
melt outlet. Using two pyrometers, the surface temperature of the deposit was recorded. The 
scanning pyrometer 2 covered a range of about 250mm. Three thermocouples measured the 
temperature at the interface of substrate and deposit. The substrate velocity varied from 1.5 to 
3mm/s and the rotational frequency was 2.5Hz. 
 

Results 

 
Temperature Simulations 
The performed simulations and the cooling conditions of the experiments are summarized in 
Table III. Initial substrate temperatures at room temperature and preheated to 1100°C were 
examined. The cooling conditions after the spray forming process were natural or forced 
convection (Table II). In the heat treatment case, the deposit was heated up to an annealed 
temperature of either 1000°C or 1200°C. After reaching the desired temperature, power to the 
heater was reduced to decrease the temperature in 200K steps. When the deposit temperature 
reached 200°C, forced convection was applied as a boundary condition. In the case of the 
predefined cooling rate, the heater power was reduced gradually to maintain the desired cooling 
rate. Radiation was considered in all stages. The location of the reference points for the thermal 
history were at a fixed position, approximately in the middle of the length of the tube. Their 
radial positions were at the substrate surface and at the maximum radial deposit surface. The 
reference point on the substrate surface arrived at the edge of the spray cone 80s after the start of 
the spray forming process. At a time of 23 seconds later, the points had passed though the cone, 
and the deposit had reached the height of the second reference point. 
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Results of the Temperature Calculation The simulation started with an initial substrate 
temperature. During a 20s period, the substrate moved from the heater to the spray cone. Natural 
convection and radiation were applied as boundary conditions. Thereafter, the spray forming 
process started (left green line in Figure 6). The process finished 153s later (right green line), 
after which time the cooling or heat treatment process started immediately. 
 

 
Figure 6. Temperature history at two reference points in two different simulations. 

 
In Figure 6, the thermal history for two different simulations are shown on a logarithmic time 
scale. The dashed lines show the thermal history at the substrate/deposit interface (Sub_cold_fc) 
and at the deposit surface (Dep_cold_fc). 50°C was the initial substrate temperature. The solid 
lines (xxx_hot_1200) show the results from an initial substrate temperature of 1100°C.  
 
The initially hot substrate was cooled down by the atomizer gas and by radiation, whereas the 
cold substrate was heated up. When the reference point at the substrate surface reached the edge 
of the spray cone, the temperature difference was about 300K. This temperature difference was 
reduced to 30K after the reference point has passed the spray cone (red lines), due to the higher 
heat demand of the colder substrate. The thermal history at the reference point at the deposit 
surface started 23s later. For the differences in surface temperature (blue lines), the effect of 
different initial substrate temperatures were less significant. This is due to the total thermal mass 
of the deposit and substrate. At the end of the spray process, a small temperature difference had 
established. 
 
At the end of the spray forming process (right green line), the temperature difference inside the 
deposit was of about 150K. For the simulation with forced convection as cooling condition, this 

Table III. Cooling Parameters in the Simulations. 
Initial Substrate Temperature  

20°C 1100°C 
natural convection natural convection 
forced convection forced convection 
annealed 1000°C annealed 1000°C 
annealed 1200°C annealed 1200°C 
 predefined cooling rate 0.02 Ks-1 
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difference lasted for the next 150s. At that time the temperature decreased to 300°C. At 1000s, 
the deposit had a final temperature of 50°C. In the case of the heat treatment process, the 
temperature difference between substrate and deposit surface quickly vanished (~50s).  
 
Cooling Rates In Figure 7, heating and cooling rates for the thermal histories of Figure 6 (hot 
substrate) and for a predefined cooling rate of 0.02K/s are shown. The thermal histories for both 
simulations (during spray forming and annealing to 1200°C) were almost identical. The 
exception was for the predefined cooling rate, in which the annealing period is extended by 
approx. 1/2h. As such, the final heating rate was reduced from 37*10− K/s to 31*10− K/s, which 
resulted in a surface temperature difference of only a few degrees. The left and bottom axis 
correspond to the predefined cooling rate (PCR), and the right and top axis to the 200K step 
temperature changes after annealing (c.f. Figure 6). For the PCR-conditions, it took 
approximately 1/2h to reach the desired rate. The rate then remained constant throughout the 
cooling period. When the temperature reached 200°C (~55,000s), the heater was turned off and 
the deposit continued to cool slowly inside the heater. 
 

 

Figure 7. Cooling rates for an annealing temperature of 1200°C and different cooling conditions. 

 
In the stepwise cooling process, the cooling rate increased to 0.7K/s for a very short period, then 
decreased to nearly zero. At lower temperatures, the peak values decreased due to the smaller net 
heat flux compared to higher surface temperatures. At 200°C, forced convection was applied, 
which resulted in a step increase in the cooling rate. 
 

Residual Stresses The development of the hoop stress for annealing temperatures of both 1000°C 
and 1200°C and for an initial substrate temperature of 1100°C are shown in Figure 8. At the 
lower left corner, the hoop stress at the end of spray forming is shown. The temperature 
reference points (c.f. chapter 'Temperature Simulations') are in the middle of length of the ring. 
40mm was the ring length, it represents approximately 1/10 of the entire deposit. The stress 
distribution for the lower annealing temperature (1000°C) and for different deposit temperatures 
at the cooling process (spray end, (1200), 1000, 400, 50°C) was arranged at the lower row (blue 
arrows). The upper row corresponds to an annealing temperature of 1200°C. At the end of the 
spray forming process, the absolute stresses were around ± 60MPa. The annealing process 
reduced the residual stress. During cooling the stress gradually increased. This resulted in tensile 
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stresses of 70MPa (1200°C) and 110MPa and compressive stresses of 120MPa (1200°C) and 
160MPa in the substrate.  
 

Spray End

1200°C 1000°C 400°C 50°C

Annealed at 1200°C

Annealed at 1000°C

-160 . -120 -80 -40 0 40 80 110 [MPa]  

Figure 8. Hoop stress development for annealing temperatures 1000°C and 1200°C. 

 

 
Figure 9. Hoop stress history for initially cold substrates, cooling condition: forced an natural 

convection, no annealing. 
 
Figure 9 shows the hoop stress distribution at three points (1=inner radius substrate, 2=interface 
substrate/deposit, 3=deposit surface). The cooling conditions were natural convection (nc) and 
forced convection (fc), and the initial substrate temperature was 50°C (cold). Up until the end of 
the spray process (153s), the conditions for both simulations were identical. At 20t s= , the spray 
process began and caused small compressive stresses at the outer substrate surface. It also caused 
tensile stresses at the inner substrate surface as a result of the temperature difference between 
inner and outer surface (c.f. Figure 6). The outer surface was heated up due to the hot atomizer 
gas, whereas the inner substrate surface remained colder. The situation changed when the spray 
cone reached the reference points. Apart from some peaks, the hot deposit generated 
compression inside the substrate. When all reference points were covered with deposit, tensile 
stress was observed at the deposit surface. This was due to the higher cooling rate at the surface 
compared to those of subjacent layers. These layers act as strain constraints for the material at 
the surface.  
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At the beginning of the cooling process (153s), differences between the two simulations were 
established. For the dashed lines (xxx_fc), the forced convection generated high tension at the 
deposit surface and moderate compression in the substrate. The temperature difference between 
the deposit surface and interface substrate/deposit was about 200K (Figure 6). With reducing 
temperature differences, the thermal strain at the substrate decreased and caused tension at the 
substrate due to strain constraints. This, in turn, caused compression at the outer region of the 
deposit.  
 
For the cooling conditions with natural convection, the same conclusion as above was achieved, 
except tension was not seen at the deposit surface. The final stress values were, in principle, the 
same (+140Mpa / -275MPa).The chosen cooling conditions didn’t affect the final residual 
stresses. 
 

 
Figure 10. Hoop stress history for initially hot substrates, cooling condition: step temperatures 

and predefined cooling rate, annealing temperature 1200°C. 
 
In Figure 10, results in the case of heat treatment are presented. The initial substrate temperature 
was 1100°C. After the spray process, the deposit was annealed in the heater. Upon reaching the 
desired temperature of 1200°C, the material was either cooled down in steps of 200K (solid 
lines, xxx_1200, c.f. Figure 6 for the temperature history) or cooled down at a predefined cooling 
rate (dashed lines, xxx_PCR, for the cooling rates of both simulation c.f. Figure 7). Within the 
period prior to the spray cone reaching the reference point, the sign of the stresses changed. This 
was due to the colder outer surface compared to the inner surface of the substrate, as the surface 
temperature of the substrate was higher than the temperature of the atomizer gas. The stress 
values were of the same order of magnitude as those of to the cold substrate case. The absolute 
values of tension and compression in the substrate and at the deposit surface were ~25MPa lower 
than in the cold case. 
 
Deposit surface heating was observed at the beginning of the annealing process, whereas the 
material was exposed to a cooling process at the substrate. Due to the corresponding thermal 
strain increments, the sign of the stresses changed. Also, the differences in the stress values 
between the inner and outer radius of the substrate tube were significant. This effect vanished 
after a few minutes, as the temperature became homogenous in the substrate. The absolute stress 
values were reduced continuously until the temperature was at 1200°C. During the cooling 
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process, peaks in the stress curves were observed for the step temperature procedure (solid lines, 
xxx_1200). When the temperature changed, peaks occurred in the curves. The peaks tended to 
have smaller absolute stress values. Afterwards, an increase in absolute stress values can be seen. 
When the deposit was cooled down to 200°C, forced convection was applied to the deposit and 
large peaks in the stress values occurred. In the case of a predefined cooling rate (dashed lines, 
xxx_PCR) the same minimum stress values were observed. The cooling started at 4,500t s≈ . 
Thereafter, the absolute stress values increased continuously and showed nearly the same values 
as in the step temperature procedure. 
 
In Figure 11, the stress development as a function of the process temperature for the initially hot 
substrate are summarized for different cooling conditions. SE denotes the situation at the end of 
the spray forming process. The solids lines mark the runs with heat treatment and the dashed 
lines represent the runs without heat treatment. For the runs without heat treatment, the stresses 
were taken when the average temperature of substrate and deposit was close to the process 
temperatures. The starting point for all runs was the same. In the case of heat treatment, lower 
stress values for higher annealing temperatures were observed (xxx_1000, xxx_1200). The 
curves for the predefined cooling rate (xxx_PCR) are exactly the same as those of the run with 
the step temperature procedure (xxx_1200). The stress development for the runs without heat 
treatment showed very different values during the cooling process, whereas the final values were 
identical. 
 

 
Figure 11. Hoop stress development for different heat treatment and cooling conditions, initial 

substrate temperature = 1100°C. 
 
 

Experiments 

 
Some spray formed tubes are shown in Figure 12. In the following, experiments #691 and #692 
were focused on. Except the preheating temperature (1200°C for #691 and room temperature for 
#692), all the parameters were identical. The experiment started at the upper end of the deposit 
(blue arrow). Thermocouple 1 (TE1) moved toward the position of the spray cone, then the 
direction was changed and a second layer was applied to the existing deposit. Yellow lines mark 
positions at which samples were taken for porosity measurements. Thermocouple TE2 reached 
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the position of the spray cone approximately 50s after spray process started. The surface 
temperature in run #691 was about 600°C, whereas the temperature in run #692 was 
considerably lower. The thermocouple measurement for that case showed a continuous increase, 
and not the expected sharp rise, in temperature. Therefore, a temperature of 300°C corresponding 
to Figure 6 can be assumed. 
 

0 mm

780 mm

# 691

410 mm
(TE2)

360 mm
(TE1)

490 mm
(TE3)

2,25
mm/s

2,25
mm/s

# 692

 
Figure 12. Experiments #691 and #692, yellow lines mark the sample position for porosity 

measurements; dashed lines are the positions for thermocouples. 
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Figure 13. Distribution of porosity in two different runs at thermocouple position TE 2, run #691 

initial substrate temperature = 1200°C, run #692, initial substrate temperature = room 
temperature. 

 

483



The results of the porosity measurements are shown in Figure 13. The total deposit height was 
about 50mm (49mm in run #691, 51.9mm in run #692). On the left side, the probe processed in 
the image analysis is shown. On the right side, the porosity is plotted as function of the deposit 
height. The curve represents the average at the corresponding height, and the error bars show the 
variation. The porosity is about 6 to 8% for higher surface temperatures, whereas the porosity 
reaches a value of 13% for the lower surface temperatures. The decay is slightly faster for the 
hotter substrate. Also, the region with nearly zero porosity is extended. At the end of layer 1, the 
porosity increases to values of about 4 to 6% in both cases. When the second layer was added, 
the porosity rises sharply to values of about 12 to 14% with slightly lower values for the initially 
preheated substrate. As shown in Figure 13, the surface temperature at the end of the spray 
process was higher than in the cold case. The porosity of the second layer for run #691 shows the 
expected behavior, a decrease to nearly zero and an increase at the end of the spray process. Run 
#692 shows a different result. After the decay in porosity, the value doesn’t go to zero and there 
is no increase in porosity observed towards the end of the spray process. 
 

Summary 

 
This paper presents the thermal and mechanical behavior of spray formed super alloy tubes. It 
has been shown that the heat treatment is the key parameter in the avoidance of residual stresses. 
The resulting residual stresses at room temperature are not affected by the cooling conditions for 
the no heat treatment case. In contrast the intermediate stresses can reach significantly high 
values. This might be important for brittle materials which may crack. In the case of heat 
treatment, the key parameter is the absolute annealing temperature. Lower the annealing 
temperatures result in higher residual stresses. The comparison between step temperature and a 
defined low rate cooling shows no difference in the final residual stresses at room temperature or 
stresses at intermediate temperatures. At the moment of deposition, the porosity shows smaller 
values for higher substrate temperatures. Also, the porosity decreases more rapidly with respect 
to the deposit height.  
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