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Abstract 

 

Superalloy are alloys developed for elevated temperatures applications, where relatively severe 
mechanical stressing is found, and a high surface stability is frequently required. Improvements in 
the surface properties of a wide range of alloys have been obtained by the implantation of 
nitrogen while field test results for industrial tools and components from a diverse range of 
applications have been positive. The objective of this work is to improve the mechanical surface 
properties of Inconel 718 by PIII (Plasma Immersion Ion Implantation - PIII). In these 
experiments, samples of Inconel 718 without heat treatment are used.  Nitrogen ions in Inconel 
samples were implanted: a) for a period of one hour, and b) for a period of 3 hours. Tribological 
properties of PIII treated samples were compared with the ones for untreated samples are 
compared. The best result is obtained for the samples treated for 3 hours after 5000 cycles of an 
unlubricated pin-on-disk test, with very little wear. 
 

Introduction 

Nickel superalloys are part of a family of metallic materials that are used at elevated 
temperatures. Inconel 718 derives its strength from solid solutions of alloying elements and, to a 
large extent, from precipitates within a solid solution matrix. Superalloys maintain their good 
mechanical properties up to temperatures close to their melting points and present good resistance 
to oxidation. Among Ni-base superalloys, Inconel 718 is predominantly used in high temperature 
applications due to its highly satisfactory price/overall performance ratio, and good mechanical 
properties with excellent weldability [1, 2]. Gas turbine engines are the major applications of this 
alloy. However, its mechanical properties are degraded at temperatures above 650oC [3-8]. 

Nitriding of superalloys has been less explored than nitriding of austenitic (FCC) stainless 
steels despite the similarity in structure and shortcomings (susceptibility to localized corrosion 
and poor tribological performance) for the two alloy systems [9, 10]. 

It is now well known that low temperature (<500°C) nitriding of austenitic stainless steels 
can produce a supersaturated FCC phase that combines high hardness and good corrosion 
resistance (above 500°C hardness is increased at the expense of corrosion resistance). This phase 
is known as s-phase or expanded austenite [11–13]. Due to the similarities between the austenitic 
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stainless steels and Ni–Cr alloys, it is reasonable to expect that an analogous phase will be formed 
in Ni–Cr alloys also. 

Williamson et al. formed just such a phase (also termed expanded austenite γN) in a binary 
Ni–20Cr alloy by low energy ion implantation at 400°C, simultaneously confirming the 
possibility of a γN phase in Ni–Cr alloys and the key role played by Cr in the formation of such 
phases [13].  

The present research seeks to increase the limited knowledge regarding to the tribology 
and corrosion behaviour of nitrided superalloys and in particular, to compare and contrast the 
properties of nitrided layers comprising nitride precipitates and supersaturated solid solution 
phases. The paper also aims to investigate the improvement of Inconel 718 surface properties 
through the plasma-assisted process of Plasma Immersion Ion Implantation (PIII). The treatment 
of Inconel 718 by this process has shown to produce substantial incorporation of nitrogen in its 
surface. 

Experiment 

 
The superalloy Inconel 718 used in this work was provided by Villares S.A. (Sumare-Brazil). 

The material was melted in a VIM furnace, re-melted in a VAR furnace, followed by 
homogenization heat treatment, hot forging in a plain open die for drafting, hot rolling for 
drafting and a hot rolling finish. Table I shows the composition of the superalloy Inconel 718 used 
in this work. 

 
Table I.  Chemical composition (wt%) of superalloy Inconel 718. 

Ni Fe Cr Mo Ti Al Nb C 

53.40 18.80 18.60 3.00 1.00 0.50 5.10 0.03 

 
PIII experiments were carried out at Laboratório Associado de Plasma – LAP  - at Instituto 

Nacional de Pesquisas Espaciais – INPE. The samples were prepared as disks of  10 mm in 
diameter by 2.0 mm in thickness. The plasma chamber was initially pumped down to ~3x10-5 
mbar (Figure 1). Next the nitrogen was introduced to produce the plasma by a glow discharge and 
the RUP-4 pulser was turned on to carry out the treatments. 

The temperatures of the samples during the treatments were carefully monitored using a 
RAYTEK infrared pyrometer, sensitive in the 250-2000oC range. The heating of the samples is 
caused by the bombardment of the ions of the samples holder. The maximum temperature for the 
conditions used in these implantation processes was 290oC. 

The composition of the surface of the superalloy before and after implantation PIII was 
investigated by X-ray diffraction (XRD) technique using a Philips-X’Pert high resolution 
diffractometer with monochromatic Cu Kα radiation.  

Ion implantation (PIII) was carried out on samples of Inconel 718 for one hour and 3 hours 
at a pressure of 6.5x10-3 mbar. Measurements of the dry friction coefficient were made using  a 
CSM-Instruments Pin-on-disk Tribometer, computer controller SN 18-313, with 5 cm/s of linear 
speed (~150 rpm), 1.0 N of applied load and at room temperature. A 3.0 mm of wear track radius 
is choosed, stopping  at 5000 revolutions running. Alumina (Al2O3) balls with 3 mm diameter, 
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polycrystalline, 99.8% purity, supplied by CSM-instruments, were used as a counter sample and 
were chosen for these tribological tests. 
 

 

Figure 1 - Schematic diagram of PIII [14]. 
 
 
 

The experimental conditions for the PIII treatment are presented in Table II. 
 

Table II – Experimental conditions used. 
Samples a) b) 

Plasma potential (V) 90 90 
Duration (min.) 60 180 
Pressure (mbar) 6.5 x 10-3 6.5 x 10-3 
High voltage (kV) 15 15 
Pulse (µs) 40 40 
Frequency (Hz) 300 30 

 

 
Disk volume loss and wear rate were calculated according to equation 1, from ASTM G-

99 norm [15]:  
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Vlost – loss in volume; 
N – covered distance; and  
L – applied load.   

Results and Discussion 

 
Fig. 2 shows x-ray diffraction (XRD) results for samples of Inconel 718, with and without 

nitrogen PIII implantation. Fig.2(a) showns the XRD of a reference sample. For one-hour 
implantation, XRD showns no new peaks because there is a very low concentration of implanted 
nitrogen. In this case, the implanted nitrogen could be observed only by EDS analysis Fig. 3. In 
the three-hour implantation case [Fig.2(c)], effect   nitrogen implantation effect can be observed 
as new peaks, possibly of γN mixed with other phases.  
 

   
                             (a)                                                              (b) 

 

 
 (c) 

Figure 2 – X-ray diffraction of PIII treated Inconel 718: (a) without treatment; (b) treated for 1 
hour; (c) treated for 3 hours. 
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        (a)  

 

 
     (b) 

 

Figure 3- Energy dispersive spectroscopy (EDS) of PIII treated Inconel 718: (a) treated for 1 
hour; (b) treated for 3 hours. 

 

 

Fig. 4 shows the results of pin-on-disk wear test for untreated and treated samples, for one 
and three hours.  

The untreated sample presents friction coefficient values (µ) of around 0.60-0.70, right 
from the beginning of the test. The friction coefficient of treated sample for one hour starts at 0.2 
and grows fast to 0.55 leveling off at around 0.50.  For the sample of 3 hour treatment,  it starts at 
0.1, grows slowly to 0.3-0.35 until reaching 4000 turns, when due to the reduction of the 
thickness of the modified layer by wear occurs and the friction coefficient finally rises to values 
closer to the ones for untreated sample. When the layer is completely worn out, the friction 
coefficient will reach the value of the reference sample, which did not happen for the number of 
cycles used in the testing. 

Hence the pin-on-disk testing confirms the improved surface tribological properties for 
Inconel 718 after IIIP treatment. Comparing both conditions of treatment, however, the sample 
treated for three hours presents better resistance to wear as shown by its wear profile, discussed 
next. 

Fig. 5 shows the wear profiles of the tracks after the wear testing of the material in the 
three conditions under discussion (reference, treated for one hour, and treated for three hours). 
Using these data, losses in volume (equation 1) and wear rate (equation 2) could be calculated, 
and are presented in Table III. 
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Figure 4 – Friction coefficient for Inconel 718 samples. 

 
 
Note that the sample reference presents a lot of wear in comparison to the samples treated by 

PIII, showing a track width (289.6 µm) seven to eight times larger than the samples treated for 
one hour (36.1 µm) and 3 hours (42.1 µm), respectively. The depth of the track (60,000 Å) is 40 
times greater than the untreated samples when compared to the samples implanted with nitrogen 
(approximately 1,500 Å). 
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        (c) 

Figure 5 -   Profiles of wear scars for Inconel 718 samples treated by nitrogen PIII. 
 

 
 

Table III – Wear rate of Inconel 718 samples treated by nitrogen PIII. 
Inconel 718 d  

(mm) 
V  

(loss in volume, mm3) 
Wear rate, 
mm/N.m 

 Untreated 0.289 230.75 1.85 
1 hour 0.036 28.70 0.29 
3 hours 0.042 33.40 0.35 
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Losses in volume during the wear testing on the sample that was not treated (230.5 mm3) 
are much greater than the one for the samples treated by PIII, about eight times for the sample 
treated for one hour (28.7 mm3) and approximately seven times for the sample treated for three 
hours (33.4 mm3). These last two results would appear to contradict the expectations, since the 
three-hour sample presents a lower friction coefficient. Consequently it would expect greater 
resistance to wear, less losses in volume and a lower wear rate. This is probably due to errors that 
could have been caused given the difficulty of accurately measuring small wear tracks, associated 
with the increased surface roughness of the alloy after IIIP treatment. This increased unevenness 
caused by IIIP treatment has been previously observed by our research group, as well as by other 
researchers [16].  
      These results are in partial agreement with Batchelor et al. [17] who reported a reduction in 
friction for plasma nitrided Inconel 718 pins sliding against untreated Inconel 718 drums [17]. In 
that study, however, wear was not reduced due to fracture of the CrN-rich layer. 

Shanov and Tabokoff [18] reported that plasma nitriding Inconel 718 at 520°C for 7 h did 
not increase erosion resistance, but in contrast to Batchelor et al. [17], claimed that ductile 
behaviour was observed in the nitrided layers. 

Conclusion 

This paper have shown that PIII is a versatile and attractive surface modification method 
for the improvement of tribological properties of Inconel 718.  

For one-hour implantation XRD it is showed that there is no new peaks besides ones seen 
in untreated Inconel because there is a very low concentration of implanted nitrogen. For one-
hour implantation, the implanted nitrogen could be observed only by Energy dispersive 
spectroscopy EDS analysis. In the three-hour implantation case, new phases can be observed in 
the x-ray diffraction technique.  

Major improvements for Inconel 718 samples treated for 3 hours are its wear resistance 
and reduction in the friction coefficient, caused by nitrogen PIII. 
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