BATTERY INNOVATION NIOBIUM AS A DISRUPTING ELEMENT

ACBMM Niobium N5

ENERGY CONVERSION AND STORAGE LANDSCAPE "...TO RELIABLY SUPPLY THE ENERGY WE NEED AT AN AFFORDABLE COST"

Energy Sources		Useful Energy	Saving Energy
	Oil Natural Gas Coal	Fuels _(gasoline, diesel, hydrogen) Electricity Heat	Capacitor Rechargeable Battery Flow Battery
	Hydropower		
	Nuclear	conversion	storage
	Renewables (biomass, water) Intermittent (solar, wind)		Panasonic Panasonic Panasonic Panasonic Panasonic

00000-

BATTERY TECHNOLOGY WIDE RANGE OF APPLICATIONS

Increasing battery size and energy storage capacity

- Technology enabler
- Portability

Energy capacity "small is beautiful

- Reduction of CO₂ emissions
- Clear out ground level pollutants
- Fuel efficiency

Safety "safety is king"

- Renewables utilization
- Offsetting intermittency
- Reduce need of power plants

Scalability and cost "reliable and cheap supply rules"

RECHARGEABLE BATTERY VARIETIES AND FORMATS

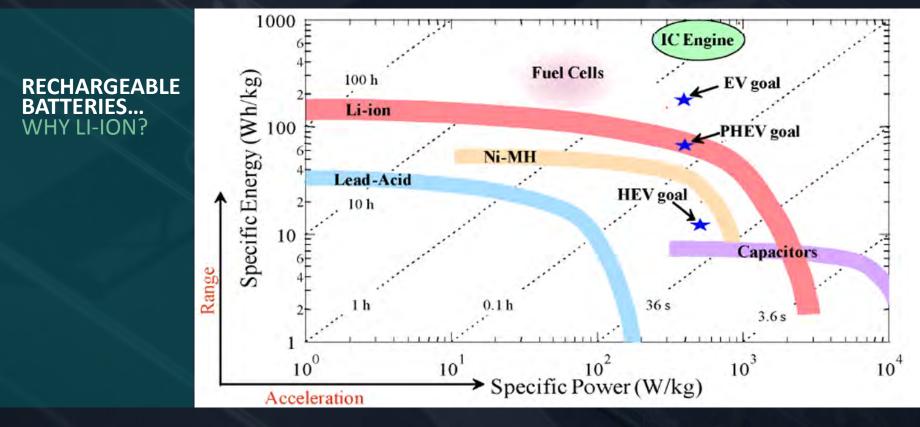
Pouch cells

Cylindrical cells

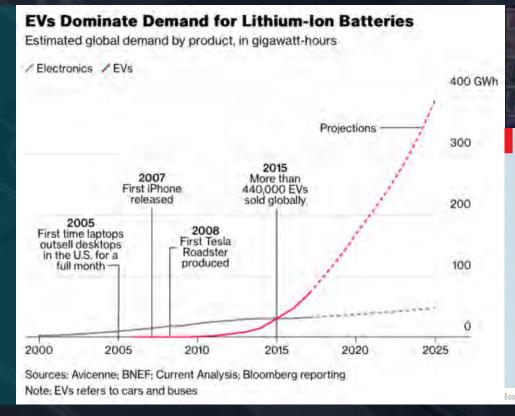
Battery cell modules

Battery pack (Tesla Model S – 16 modules) 540 kg | 7,104 lithium-ion cylindrical cells | 85 kWh

Tesla 50 MWh/25 MW ESS batteries installed at an existing 60 MW Gannawarra Solar Farm in Australia


ESS – Energy Storage System

BREAD TAXABL



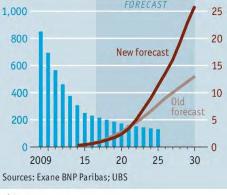
CBMM Niobium N5

00000-

 THE NEW OIL

 LITHIUM

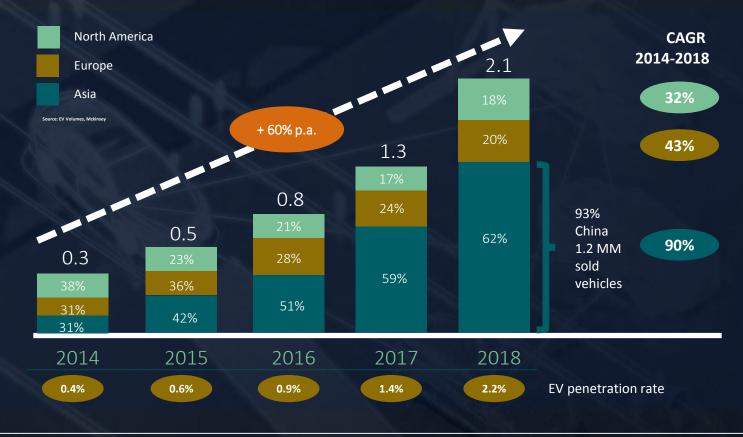
 The Investor's Boom is Here!


 Sparks fly

 Battery electric vehicles, worldwide

 Battery cost, €/kWh
 Penetration, %

 1,000
 FORECAST
 25


 800
 New forecast
 20

CBMM Niobium N5

GLOBAL EV MARKET SALES BY REGION

00000-

CBMM Niobium N5

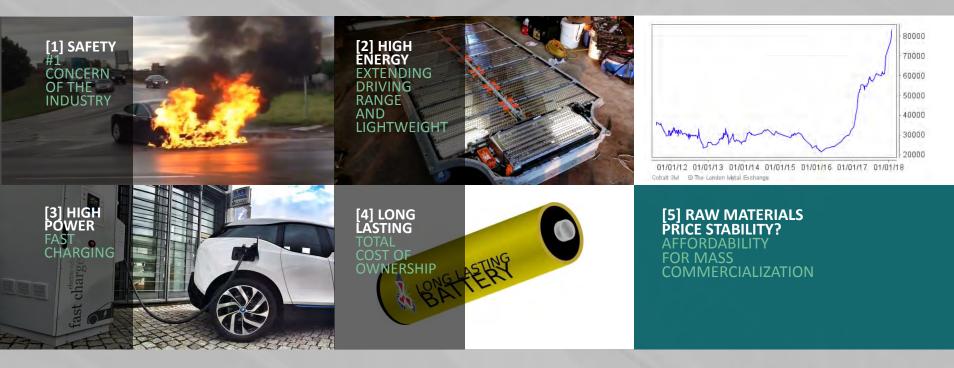
BATTERY FALLING PRICES WILL BOOST HIGHER DEMAND

Base: 40 kWh, NMC 622, Prismatic Design

Li-ion battery pack prices, USD/kWh


Source: BNEF and Mckinsey

Total battery demand, GWh



00000-

BATTERY CELL MANUFACTURING CAPACITY - 2025 (~726 GWH)

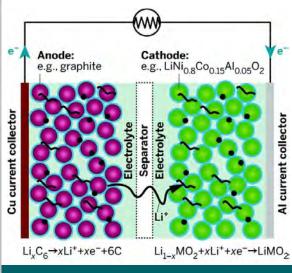
MATERIALS CHEMISTRY IS KEY ON BATTERY TECHNOLOGY

00000-

BATTERY TECHNOLOGY MATERIALS CHEMISTRY

INTO ELECTRICITY

CARBON GRAPHITE


Lithium Titanium Oxide $(Li_4Ti_5O_{12} - LTO)$

Niobium Titanium Oxide (Nb₂TiO₇ – NTO)

Silicon

Silicon-Graphite Composites

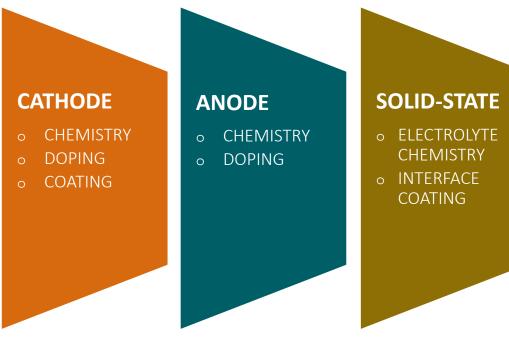
Li metal

CHEMICAL ENERGY

Lithium Cobalt Oxide (LiCoO₂ – LCO)

Lithium Manganese Oxide (LiMn₂O₄ – LMO)

Lithium Iron Phosphate (LiFePO₄ - LFP)


Lithium Nickel Manganese Cobalt Oxide (LiNiMnCoO₂ – NMC)

Lithium Nickel Cobalt Aluminium Oxide (LiNiMnAlO₂ – NCA)

NIOBIUM FOR LITHIUM-ION BATTERIES

NIOBIUM IS ADDRESSING THE MAJOR CHALLENGES IN MATERIALS CHEMISTRY TO MEET DEMANDS OF HIGHER PERFORMANCE, LONGER-LIFE AND SAFER BATTERIES

NIOBIUM BENEFITS FOR LITHIUM-ION BATTERIES

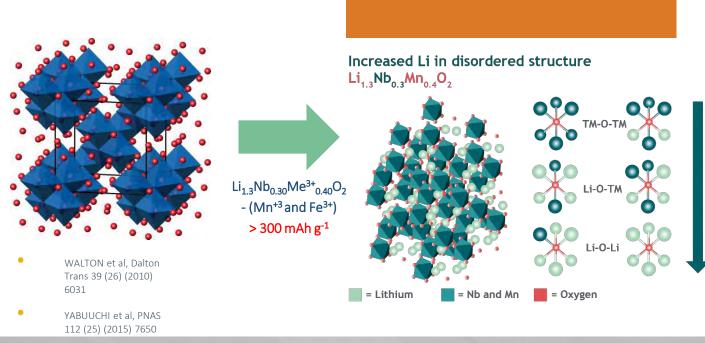
CATHODES Niobium is being used to develop cobalt-reduced or -free, lithium-rich and manganese-based new cathode materials with higher energy density and longer-term stability


ANODES Fast charging, safer and higher energy capacity batteries are being possible by the use of Niobium in the formulation of new anode materials under current industrial trials

SOLID STATE Niobium is becoming an essential element to further the development of all solid-state batteries, the ultimate solution on battery technology

00000

NIOBIUM BENEFITS FOR LITHIUM-ION BATTERIES



00000-

KCBMM Niobium N5

CATHODE CHEMISTRY INCREASING ENERGY DENSITY

Cobalt-free Li_3NbO_4 ordered rock-salt structure (NbO₆ octahedra units) Li atoms in red

Further Li content induces the formation of *cationdisordered rock-salt structure (DR):*

Novel redox mechanism – combining TM and oxide ions oxidation (Mn+3/Mn+4 and O²⁻/O);

Nb⁺⁵ ions stabilizes effectively the solid-state novel redox mechanism (charge compensation).

+Li addition

CATHODE CHEMISTRY INCREASING ENERGY DENSITY

00000-

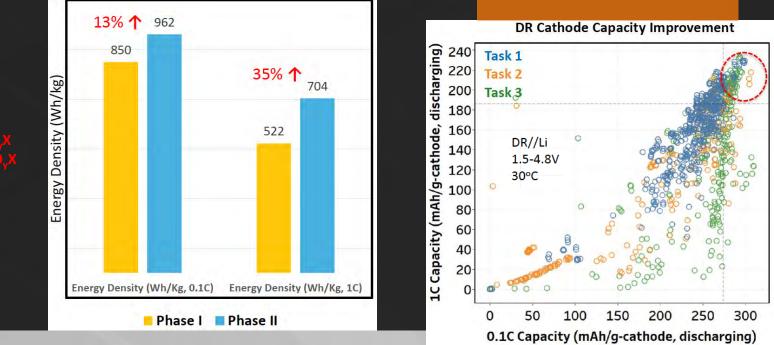
	CATHODE CHEMISTRY	SPECIFIC CAPACITY – mAh g ⁻¹	VOLTAGE - V	SAFETY
COMPETITIVE LANDSCAPE WITH COMMERCIAL	Li ₃ NbO ₄ -based Host Structure (DR)	> 300	3.2	0
CATHODES	NMC 622	221	4.5	0
	NMC 111	189	4.3	
	NCA	167	3.8	
	LCO	160	4.0	
	LFP	155	3.4	++
	LNM	130	4.6	+ +

HIGH-THROUGHPUT SCREENING

- Compositional space
- Synthesis process
- Carbon coating
- Electrolyte
- Testing protocol

CATHODE CHEMISTRY INCREASING ENERGY DENSITY

DR Cathode Mn-rich Chemistry Development


 $Li_{1,4}Nb_{0,1}Mn_{0,43}M_xO_yX$ $Li_{1,35}Nb_{0,1}Mn_{0,40}M_xO_y$

Challenges:

Cycle Life

00000

• Electronic Conductivity

Wildcat

Discovery Technologies

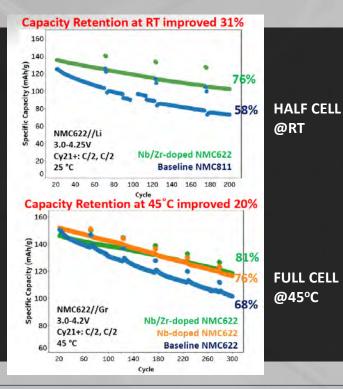
> KICBMM Niobium N5

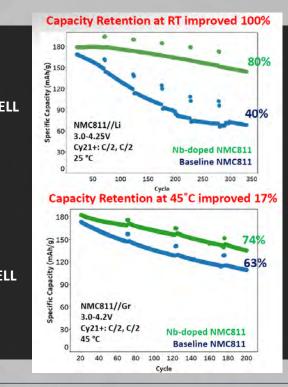
CATHODE CHEMISTRY IMPROVING CAPACITY RETENTION

NMC622

Wildcat Discovery Technologies

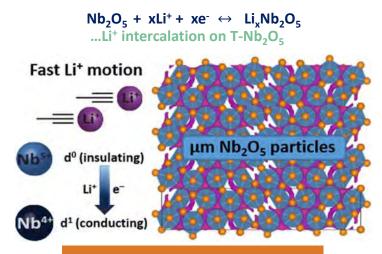
NMC811

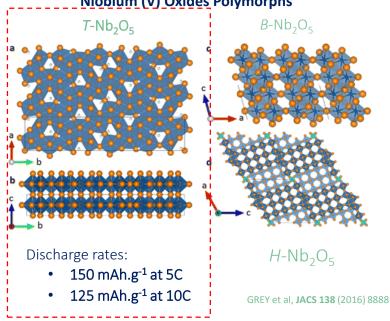

NIOBIUM DOPING


NMC622 NMC811

00000

Primary doping Nb (0.5 wt.%)


Secondary doping Nb/Zr (0.5 wt.%/0.5 wt.%)

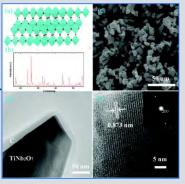

KJCBMM Niobium N5

ANODE CHEMISTRY HIGH POWER & FAST CHARGING

NIOBIUM (V) OXIDES

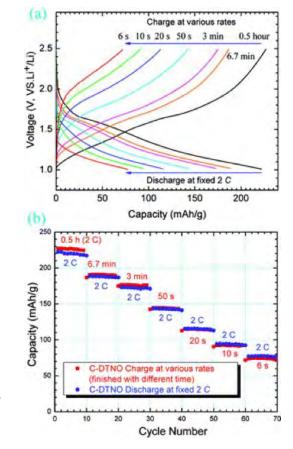
- Potential Window ca. +1.0 to +2.0 V vs. Li⁺/Li
- 0.8 to 2.0 Li per Nb⁺⁵/Nb⁺⁴ redox pair
- High Rate
- High Capacity

Niobium (V) Oxides Polymorphs


47CBMM Niobium N5

Nio ANODE CHEMIISTRY HIGH POWER & FAST CHARGING

Titanium Niobium Oxides - TNO Ternary Farnity materials


 $\begin{array}{c} \mathbf{10}_{2}\mathbf{O}_{7} \\ \mathbf{10}_{2}\mathbf{O}_{5} \end{array} \xrightarrow{\mathsf{Ti-Nb-O Ternary Family}}{\mathbf{10}_{2}\mathbf{O}_{5}} \\ \begin{array}{c} \mathbf{10}_{2}\mathbf{O}_{5} \end{array} \xrightarrow{\mathsf{TiNb}_{2}\mathbf{O}_{7}} \\ (\mathsf{TiO}_{2}.\mathsf{Nb}_{2}\mathsf{O}_{5}) \end{array} \xrightarrow{\mathsf{Ti2Nb}_{10}\mathbf{O}_{29}} \\ \begin{array}{c} \mathbf{10}_{2}\mathbf{O}_{29} \end{array} \xrightarrow{\mathsf{Ti2Nb}_{10}\mathbf{O}_{29}} \\ \begin{array}{c} \mathbf{10}_{2}\mathbf{O}_{29} \end{array} \xrightarrow{\mathsf{TiNb}_{2}\mathbf{O}_{5}} \\ \begin{array}{c} (\mathsf{2}\mathsf{TiO}_{2}.\mathsf{5}\mathsf{Nb}_{2}\mathsf{O}_{5}) \\ \begin{array}{c} \mathbf{10}_{2}\mathsf{TiNb}_{24}\mathsf{O}_{62} \\ \mathbf{10}_{2}.\mathsf{12}\mathsf{Nb}_{2}\mathsf{O}_{5} \end{array} \xrightarrow{\mathsf{TiNb}_{2}\mathsf{O}_{5}} \\ \begin{array}{c} \mathbf{10}_{2}.\mathsf{12}\mathsf{Nb}_{2}\mathsf{O}_{5} \end{array} \xrightarrow{\mathsf{TiNb}_{2}\mathsf{O}_{5}} \\ \begin{array}{c} \mathbf{10}_{2}.\mathsf{12}\mathsf{Nb}_{2}\mathsf{O}_{5} \end{array} \xrightarrow{\mathsf{TiNb}_{2}\mathsf{O}_{5}} \end{array} \xrightarrow{\mathsf{TiNb}_{2}\mathsf{O}_{5}} \end{array}$

GOODENOUGH et al, Chem Mater 138 (2016) 8888

- Theoretical Energy Density:
- Theoretical Phere Density:
 387 re9 xmAn.g
 - (~5 Li per formula unit) Ti⁺⁴/Ti⁺³ and Nb⁺⁵/Nb⁺⁴; Nb⁺⁴/Nb⁺³

redox couples (~5 Li per formula unit)

ACBMM Niobium N5

ANODE CHEMISTRY HIGH POWER & FAST CHARGING

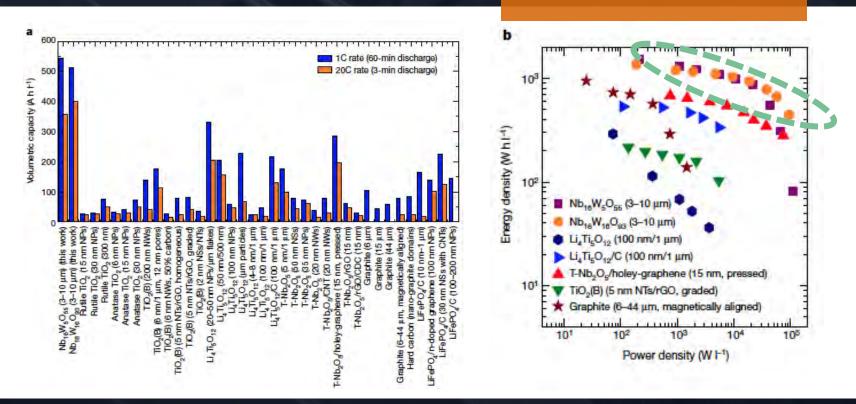
NIOBIUM TUNGSTEN OXIDES- NWO NEW CLASS OF Nb₂O₅-WO₃ MATERIALS AT MICRO-SIZED SCALE

b C Monoclinic, crystallographic shear ReO₃-like structure Orthorhombic, tetragonal

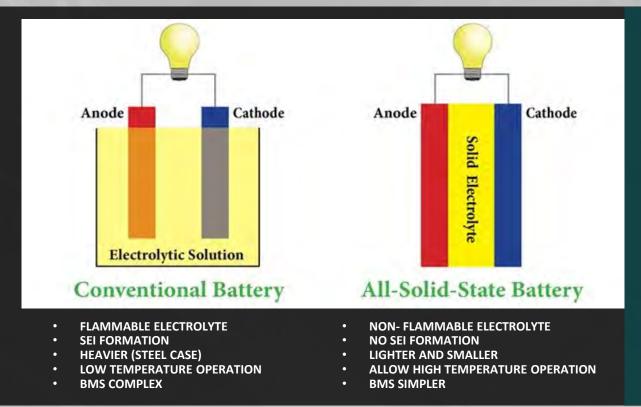
Kent J. Griffith et al., Nature 559 (2018)

00000-

 \diamond


Nb₁₆W₅O₅₅

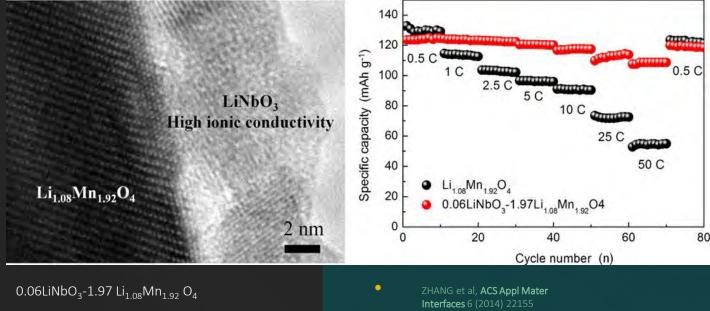
 $(Nb_{18}W_{16}O_{93})$


tungsten bronze superstructure

ANODE CHEMISTRY HIGH POWER & FAST CHARGING

NWO > LTO > LTO/C > T-Nb₂O₅/Graphene > TiO₂ NPs > Graphite

ALL SOLID STATE BATTERIES


00000-

OTHER BENEFITS:

- Higher cycling stability;
- Manganese dissolution prevention;
- Lower charge-transfer resistance.

NIOBIUM INCREASES RATE CAPABILITY / IONIC CONDUCTIVITY

LITHIUM NIOBATE (LN) COATING ON SPINEL-LIKE LMO CATHODE

00000

NIOBIUM LIFE CYCLE ON BATTERY MATERIALS

1st life

xEVs, e-Buses, e-Bikes, Consumer Electronics

Niobium recycling

2nd life Energy Storage Systems (ESS) Home Energy Storage

Niobium based batteries are projected to well over 10,000 charge-discharge cycles with 80% capacity retention

Niobium is a sustainable and safe metal with no harmful and toxic properties

FINAL WORDS

00000

. . .

Niobium is poised to be a DISRUPTIVE element for advanced lithium-ion battery materials:

- ✓ Cobalt-free, high-energy, disordered rock-salt (DR) structures for cathodes;
- Doping to improve capacity retention upon cycling;
- ✓ High power and fast charging Nb-based mixed oxides for anodes;
- Coating for improving rate capability and ionic conductivity;
- ✓ Improved safety and long battery life.